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Abstract

Summability of spherical #-harmonic expansions with respect to the weight function

I
critical index of summability of the Cesaro (C,J) means of the s-harmonic expansion; it is
proved that the (C,d) means of any continuous function converge uniformly in the norm of
C(S91) if and only if 6> (d —2)/2 + Z;l:l K; — min| <;<q kj. Moreover, it is shown that for
each point not on the great circles defined by the intersection of the coordinate planes and
S9-1 the (C,d) means of the h-harmonic expansion of a continuous function f* converges
pointwisely to fif 6> (d — 2)/2. Similar results are established for the orthogonal expansions

with respect to the weight functions H;lzl ;1% (1 — |x[*)*""/% on the unit ball B¢ and

9 (1;>0) on the unit sphere S¢~! is studied. The main result characterizes the

Xj

e, x’.‘fﬁl/z(l — x],)*""/* on the simplex T“. As a related result, the Cesiro summability of

=1
the generalized Gegenbauer expansions associated to the weight function |¢*(1 — tz);'fl/ 2

[—1, 1] is studied, which is of interest in itself.
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1. Introduction

Ordinary spherical harmonics are homogeneous polynomials orthogonal with
respect to the Lebesgue measure on the unit sphere S?~! of R?, which is the unique
measure on S?~! invariant under the orthogonal group. The fact that the spherical
harmonics are associated with the orthogonal group plays an essential role in
studying the summability of spherical harmonic expansions; it allows us to invoke
the techniques in classical Fourier analysis; see, for example, [1,11].

The objective of the present paper is to study the Fourier expansions in A-
harmonics, which are homogeneous polynomials orthogonal with respect to the
measure /42 dw on S where

hK(X): |x1|Kl"'|xd|Kd7 Ki>07 (11)

and dw denotes the ordinary surface measure on S“~!. The measure is invariant
under the group 2‘2’, a subgroup of the orthogonal group. The theory of A-harmonics
is developed by Dunkl ([4-6] and references therein) for measures invariant under
finite reflection groups. The abelian group Z;’ is the simplest example. In the general
setting, let G be a finite reflection group with positive roots R,. For veR?, let
oyx =X — 2({x,v> /<{v,v))v denote the reflection with respect to the hyperplane
perpendicular to v, where {x,v) is the Euclidean inner product of R?. Let x be a
nonnegative multiplicative function vi—x, defined on R, with the property that
Ky = Ky Whenever gy is conjugate to o, in G, that is, when there exists g € G such that
ug = v. Then the measure /, invariant under G is defined by

he(x) = T 1<xv) [0 (1.2)

VER,

If G=274, (1.2) becomes (1.1). The theory of h-harmonics is in many ways
comparable to the theory of the ordinary harmonics. There is a family of commuting
operators, &; (Dunkl’s operators), defined by

() = s+ 3 =)

<Vaei>7 1<l<d7
R X v)

where 0; is ordinary partial derivative with respect to x; and ey, ...,e; are the
standard unit vectors of RY. The h-harmonics are homogeneous polynomials
satisfying the equation Ayp = 0, where A, = @% + 4 9(2, is the analogous of the
usual Laplace operator. Let ?ﬁ denote the space of homogeneous polynomials of
degree n in d variables, and let #?(h2)c2? denote the space of h-harmonic

polynomials of degree n. If all x; =0, then Ji”ff(hi) is the space of ordinary
harmonics. It is known that

/Sd?lpqh,zC do =0, peé’fﬁ(hi), qu;’Ll,
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where Hf,i denotes the set of polynomials of degree at most m in d variables.

Moreover, we have

d—1
dimy,i:(Hd ) and dim #¢(i2) = dim 2/ — dim 2_,.

Let {Y,,} denote an orthonormal basis of #(h?). The reproducing kernel of the
space #4(h2) is defined by

Z Yi(X) Yoi(y), N, = dim #9(h2).
For fe L*(h%; S%"), we denote its projection to #¢(h2) by P,(h2;f). It follows that

Pulsf %) = | S0)Pullix y)l(y) doo(y). (1.3)
Although orthonormal bases of fi(h,zc) are not unique, the projection operator is
independent of the bases and is uniquely defined; moreover, the reproducing kernel
P,(h%;x,y) is also unique. For f'e L*(h2; S?"!), its h-harmonic expansion is defined
uniquely by

ZP 7f}n{

We note that this expansion is independent of the choice of orthonormal bases. For
the ordinary harmonics, such an expansion is called the Laplace series (cf. [7,
Chapter 12]). As in the case of ordinary harmonics, if f is merely continuous, the
partial sums of the expansion do not converge uniformly in general and we need to
consider the summability method such as the Cesaro (C,J) means.

For 6>0, the Cesaro (C, ) means, s°, of a sequence {s,} are defined by

n—k+d6—1

e e S

n n

where the second equality holds if s, is the nth partial sum of the series Y~ ¢x. We
say that {s,} is Cesaro (C,d) summable to s if 50 converges to s as n— 0.

In order to study the summability of the orthogonal expansion, we need to have
knowledge of the reproducing kernel. The compact formula of the reproducing
kernel for -harmonics associated to /2 for any finite reflection group is known to be
[15]

d—2
(<l +>57)

n+|1<|1+%

P,(h:;x,y) =
(hsx,y) "], + 22

where V' : TT1?—TI1¢ is the so-called intertwining operator between the commutative
algebras generated by the partial derivatives and that generated by the Dunkl
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operators, C,(f') denotes the Gegenbauer polynomial of degree n with index /, and
|y = > _yer, Kv- However, an explicit formula of V' is known only in the case of
symmetric group S3 and in the case of Zg. In the latter case, the formula of V' [14]
leads to an explicit formula for the reproducing kernel; more precisely, for the weight

function /42 in (1.1), the nth reproducing kernel function satisfies the following
formula [14]:

(//li’ )_C,Cn+|K|1+(d_2)/2
|kl +(d —2)/2
(Il +453)
X [ Cy (Xt + - + XaYata)
(1,1

d
X 1+4)(1 =)' at, (1.5)

i=1

where k|, = Z;lzl x; and ¢, denotes the constant

1
€ = Cgy ... C,, Where ¢, = (/ (1-2)" dt)
-1

If some k; = 0, then the formula holds under the limit relation

lim c// FOA =0 dr=f(1) +f£(=1)]/2. (1.6)
When all k; = 0, we have V' = id and (1.5) reduces to the usual zonal polynomial for
the ordinary spherical harmonics

P,,(X, y) = % Cr(t(d_2)/2)

-1

({x,¥)).

For the Cesdaro summability, it is proved in [15] that for /42 in (1.2) and any finite
reflection group, the A-harmonic expansion of a continuous function on S?°! is
uniformly (C,J) summable if

d—-2
0> 5 + Ky. (1.7)

VER,

The proof uses formula (1.4) and an integral formula of the intertwining operator V,
which reduces the problem to the summability of Gegenbauer expansion in one
variable, just as in the case of ordinary harmonics; that is, the proof reduces the
convergence over S?~! to convergence at just one point (say, north pole). However,
reducing to one point is reasonable for the ordinary spherical harmonic expansion,
since the orthogonal group acts transitively on S~!; but it is not as natural for the /-
harmonic expansion, since the subgroup Zg no longer acts transitively on S9!,
Moreover, for d = 2, the h-harmonic expansion on S' corresponds to the orthogonal
expansion with respect to the Jacobi weight function (1 — )" (1 4+ )" on (—1,1).
The result in [9,12] shows that the critical index of (C, d) summability is max{x,x;},
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which is smaller than x; + k, in (1.7). The main result of the present paper is to
characterize the critical index of the (C,d) means for /, associated with Z¢: the /-
harmonic expansion of every continuous function on S9! with respect to (1.1) is
uniformly (C, ) summable if and only if
d-2 &
o0>——+ K, — min k;
2 — 1<i<d

(see Theorem 2.1 in the following section). The proof is based on an accurate
estimate of the Cesaro means of the reproducing kernel. The integrals in formula
(1.5) of P, (h2) make this possible, but the task is much more difficult comparing with
the case of ordinary harmonics; the hard estimate is the major technical part of the
paper. Our investigation also uncovers other interesting phenomena that do not
appear in the study of ordinary harmonics; for example, we shall show that the space
S?-1 equipped with the measure hf, dw has a boundary consisting of the great circles
defined by the intersection of S?~! with the coordinate planes (that is, the zero set of
h, in (1.1)), and the pointwise summability on the boundary is worse than that in the
interior.

There is another reason that we pay special attention to the weight function 4, in
(1.1). Recently in [16,17], we have shown that orthogonal polynomials on the sphere
S¢ and those on the unit ball

B! = {xeR’: |x|<1}
and on the simplex
T = {xeRd: x120, ..., x420,1 —x; — -+ —x4=0}

are closely related. In particular, the -harmonics associated with /i, in (1.1) in d + 1
variables are related to the orthogonal polynomials with respect to the weight
function

d
2 2\u—1/2
wr ) =TT P = (1.8)
i=1
on BY, where |x|* = x} 4 -+ + x5, and those with respect to the weight function
d
= [Ty (1.9)
i=1
on the simplex 79 where |x|,=xj+ - +x; for xeT? The orthogonal

polynomials with respect to the weight function Wf(x) =(1- |x|2)"71/2 (the case
k=0 on W,fu) and WKT’ . are the classical orthogonal polynomials, since they are
eigenfunctions of a second-order differential operators (see [7, Chapter 12]).

Let v 'Z(W,?M) denote the space of polynomials of degree n that are orthogonal to
polynomials of lower degrees with respect to W, on Q, where Q = B or @ = T“. It
is known that dim 7 (W2,) = dim 27 Let {Py} 4= denote an orthonormal basis

|=n
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of ¥ z(WQ ), where o€ N¢. Then the reproducmg kernel of 74 (W2 ) is defined by

P,( Kﬂ,xy Z P(x

|ot|=n
For feL*(W;2,), we denote the projection of f to W WE,) by P(W2;f). Tt
follows that
o
(WE0) = [ FORVE X DWE, () dy. (110)

Although orthonormal bases of 7 ¢ Q% u) are not unique, the projection operator is
independent of the bases and is uniquely defined; moreover, the reproducing kernel
P,(W2,) is also unique. For feL*(W2), its Fourier expansion in terms of the
associated orthogonal polynomials is defined uniquely by

Z P, (Wif.x)

which, in turn, is independent of the choice of orthonormal bases.

The study of the Cesaro (C, ) summability of the classical orthogonal expansion
for Wf on BY began with the work of Chen, Koschmieder and others (see [7,
Chapter 12]), but the necessary and sufficient condition was found only recently in
[19]. For the summability of the classical orthogonal expansion on the simplex 77, it
is proved in [18] that the uniform (C,J) summability holds if > ||, + (d —1)/2
which, however, is not sharp. In the present paper, among other results, we shall give
necessary and sufficient conditions for the uniform summability for both W2, on B
and W on T9.

This is possible since recently in [16,17] we have shown that orthogonal
polynomials on the sphere S¢ and those on the unit ball and on the simplex are
closely related. In particular, the h-harmonics associated with /4, in (1.1) in d + 1
variables are related to the orthogonal polynomials with respect to the weight
function W2, and W[ . In the case of BY, it is shown in [20] that

n+ il + p+ 95t
(WKBH; 7 ) CK(’,M | ‘1 'ud / /
il +u+ 5 11}
1

d7
(Il +u+757)
x Cp 2

d

< [T (1 +a) (1 =)o de(1 — ) ds. (1.11)

i=1

(et + -+ + xapata + sy/1— xPy/1— yP)

In fact, the summability of the orthogonal expansion on B¢ follows from that of the
corresponding orthogonal expansion on S? (see Section 3 below and [20]).
Consequently, our study of the 4-harmonic expansion for 42 will yield results for
the orthogonal expansion with respect to the weight function W,f# on B?. This will
give the sufficient part of our necessary and sufficient result on the uniform
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convergence of the (C,5) means on B? (Theorem 2.4). On the other hand, the
necessary part of the theorem goes the other way: the necessity of the condition for /-
harmonic expansions will follow from that for the orthogonal expansion with respect
to Wk,

The result turns out to be new even in the case of d = 1. Indeed, for d = 1, we are
dealing with orthogonal expansion associated with the weight function

(;u+1u+ 1) |l|2'u 1 — ZZ)/l—l/Z

FO+ 2T+ 172) (112

wyu(t) =

n [—1, 1]. The orthogonal polynomials associated to w; , are called the generalized
Gegenbauer polynomials; they are related to the Jacobi polynomials P,(f’ﬁ >(t)
associated with the weight function (1 — 7)*(1 + ) as follows:

A
i () = B e ),

(Bt3), "
A
S e A (11
2/n+1

As it is shown in [14], an orthonormal basis of the 4-spherical harmonics associated
with £, ,(x) = |x1]*|x2" can be given in terms of the generalized Gegenbauer

polynomials. Moreover, let C ) denote the normalized generalized Gegenbauer
polynomials; then formula (1.1 1) reduces to

- ) +A+p
GO () ) (1) =
n (X) n (y) /1+’u C)Cy
1 1
X / / CH1 (txy + sV1 — x2y/1 —)?)
-1 -1
x (14 0)(1 =211 =) deds (1.14)

(see [14]). Although the generalized Gegenbauer polynomials are related to the
Jacobi polynomials, the (C, ) summability of the generalized Gegenbauer expansion
and that of the Jacobi expansion do not follow from each other, since (C, J) means
of a sequence s, are in general not related to the (C, ) means of s,,. Our result gives
the necessary and sufficient condition for the (C, ) summability of the generalized
Gegenbauer expansion. It is used, in turn, in the proof of the necessity in the case of
S9! and B? (see Section 3). The summability of the generalized Gegenbauer
expansions was studied from the point of view of positivity in [8], where a positive
convolution structure was defined. For the most part, such a structure can be derived
from the explicit formula (1.14) and it does not give the sharp result for the (C, )
means.

For the weight function W7

K, )

the relation between the /A-harmonics and the
orthogonal polynomials with respect to WKT , leads to a compact formula for the
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reproducing kernel P, (W7 :x,y) [18]

K;N

Pn(WT,ﬁX y)

K

e 2n+ ||, + p+ 45t 1/ /
o |K|1+u+" Ly

(M++

x Gy, me (vxly1t1+ +\/Xdyetd+s\/l X[, \/1 vlh)

d

H Yt dt(1 — 2" ds. (1.15)

However, the case of the orthogonal expansion with respect to W,Z g onT 4 is more
complicated; its summability does not follow directly from that of A-harmonics.
Consequently, it is necessary to derive accurate estimates for the kernel function.
There are clearly similarities between (1.5) and (1.15), so that the (C, ) means of the
kernel P, (W, u’ ;X,y) can be estimated using a similar technique as in the case of /-
harmonics. There are, however, additional difficulties that lead to a certain
restriction on the parameters in our results for W/ . -

The paper is organized as follows. In Section 2 we state and discuss the main
results of the paper. The proof of these results are given in Section 3, assuming a
result on the generalized Gegenbauer polynomials that is needed for the necessary
part of Theorem 2.4 and the estimate of the (C,d) kernel in the case of W, . The
result on the general Gegenbauer polynomials is proved in Section 4, which amounts
to prove a lower bound for a double integral of the Jacobi polynomials. The estimate
of the (C,d) kernel of the of s-harmonic expansion is given in Section 5 and the

estimate of the kernel in the case of W is given in Section 6.

2. Main results
2.1. h-harmonic expansion

Let SO(h%;f) denote the Cesaro (C,8) means of the Fourier series of f in A-

harmonics. It follows from (1.3) that we can write

Splhsf x) = [ fWK (3 x,¥)e(y) doo(y),

Sd-1

where K?(h%;x,y) denote the Cesaro (C,§) means of the kernel P,(h2;X,y),

k+96
<n+5>zk ( o >Pk(hi;x,y>.

K (hs;x,
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Our first result is about uniform summability of the s-harmonic expansion.

Theorem 2.1. The (C,d) means of the h-harmonic expansion of every continuous
function f with respect to h2 in (1.1) converge uniformly to f on S~ if and only if

5>(d—2)/2+\1<\1—lré1il£d K. (2.1)

Let 17 (h2; S971), 1<p< oo, denote the weighted L” space. An immediate corollary
of Theorem 2.1 is the following result.

Corollary 2.2. The (C, ) means of the h-harmonic expansion of a function f for h* in
(1.1) converge to f in the LP(h%;S") norm, 1<p< oo, or C(S9) norm for p = o,
provided (2.1) holds. For p =1 and oo, condition (2.1) is also necessary.

The proof of Theorem 2.1 amounts to show that the Lebesgue functions
L= [ KR I do
Sd—1

are uniformly bounded in 7 for all xe S?~! if and only if (2.1) holds. If one of the «; is
zero, then the simple proof [15] applies, which reduces the proof to that of
Gegenbauer expansion in one variable, similar to the case of ordinary spherical
harmonics. However, as discussed in the introduction, if none of the k; is zero, then
the proof of the sharp result in Theorem 2.1 can no longer be reduced to that of one
variable. Indeed, the sufficient part of the proof is based on an accurate estimate of
the kernel K°(h2;x,y), proved using the explicit formula (1.5) of the reproducing
kernel. The proof of the necessity follows from evaluating I,(x) at the points of
intersection of certain great circles, which are defined by the intersection of S?~! and
the coordinate planes. In fact, these great circles are like boundaries on S9! and the
proof of necessity shows that the [,(x) attains its maximum on this boundary. Let us
define

d
sdt = S‘“\U {xes? ! x; =0},
i=1

which is the interior region bounded by these boundaries on S?~!. We note that the
points on the planes {x : x; = 0} are exactly where the weight function /2 in (1.1) has
singularity. We have the following result.

Theorem 2.3. Let f be continuous on S If §>(d — 2)/2, then the (C,5) means of
the h-harmonic expansion of f for h> in (1.1) converge to f for every xeSi‘fgl.

Moreover, the convergence is uniform over each compact set contained inside Si‘fljl.
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In other words, for the pointwise convergence away from the singularity of /,, the
convergence holds if 6> (d — 2)/2, independent of the value x, which is the same as
the critical index for the ordinary harmonics. This phenomenon does not show up
when we deal with the ordinary harmonics, for which there is no difference in critical
index between uniform and pointwise convergence. According to this theorem, S¢~!
equipped with /2 dw possesses boundaries. This fact can be better understood when
we consider the connection between A-harmonics and orthogonal polynomials on B?
and those on T7.

2.2. Orthogonal expansion on the ball

The connection between /-harmonics and orthogonal polynomials on B? is
described in [16] for a large class of weight functions on S?~!. We shall restrict
ourself to A, in (1.1) and W,f_# in (1.8). We need to emphasis that the connection is
between orthogonal polynomials on B? and on S? (not S¢!); the weight function
ijﬂ is related to the weight function ., defined on S¢ by

Kl|xd+1|uv Ki>07 ,MZO, (22)

d
heu) = T
i=1

where X = (X1, ..., x411)€S?. Let us denote by {P}} 4= an orthonormal basis of
4 Z(W,fu), where aeN¢. Since W2 is an even function in each of its variables, P

can be chosen as even functions when 7 is even and odd functions when » is odd.
Define functions Y on R*! by

Y (y) =r"Py(x), wherey=r(X,xq1), 1=yl

Note that x = (x1, ..., x4) € B under the above change of variables. It turns out that
Y] are homogeneous polynomials of degree n in y, and they form an orthonormal

basis for #¢*!(h2;Z,) which consists of h-harmonics of degree n that are invariant
under sign changes of the last component; that is,

e%d+l (hz .

K’

Zz) = {Yec}’fff“(hi): Y(X,Xd+1) = Y(X, —xd+1)}.

In particular, the great circle xs,; =0 on S becomes the boundary of B?, since
Xy =1- x|>. As a consequence of this connection, we can derive a compact
formula for the reproducing kernel P,(W2 :x,y) from the relation

K00
P (W2, y) = [Pu(h} 5 (X, Xa1), (¥, Ya+1))
+ Pu(hy s (X, Xa41), (¥, —Yar))]/2. (23)

Combining (2.3) and (1.5) we derive the explicit formula (1.11) for P,(W2 ;x,y).

1,0
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Let SS(W,E ;) denote the Cesaro (C, ) means of the orthogonal expansion of f

with respect to W2,. Tt follows from (1.10) that we can write

S(S(WBu’f7 )_ Bdf( )K(S(VVKB;;; Y ) K‘ll( )dy7

where K (W2 ) denote the Cesdro (C, §) means of the reproducing kernel P,(W}2 ),

k+0
KWy (nM)zko( R LR

n

We state the results concerning W2, as follows.

Theorem 2.4. The (C,0) means of the orthogonal expansion of every continuous
Sfunction [ with respect to W, W in (1.8) converge uniformly to f on B? if and only if

0>(d—1)/2+ ||, + p —min{xi, ..., xq, u}. (2.4)

Corollary 2.5. The (C,0) means of the orthogonal expansion of f* with respect to W,fu
in (1.8) converge to f in the Lp(Wf”,Bd) norm, 1 <p< oo, or C(BY) norm for p = o,
if (2.4) holds. Moreover, the condition (2.4) is necessary for p =1 and .

For the classical orthogonal expansions with respect to Wf on B, some partial
results were obtained early in the literature, see [7, Chapter 12], with the restriction
u = (d — 1)/2; the sufficient and necessary condition in Theorem 2.4 was first proved
in [19].

To state the pointwise convergence, we need to define the following set

Bl = {xeB’ |x|]<1 and x;#0, 1<i<d},

which is the interior region bounded by the boundary of B? and by the hyperplanes
{x: x; =0} for I<i<d. Then we have

Theorem 2.6. Let f be continuous on BY. If 5> (d — 1)/2, then the (C, ) means of the
orthogonal expansion of f with respect to W2 in (1.8) converge to f for every x e B

Kl nt*
Moreover, the convergence is uniform over each compact set contained inside Bﬁlt.

In other words, for the pointwise convergence away from the singularity of W ”,
the convergence holds if 0> (d — 1)/2, independent of the values of k and pu. The
result appears to be new even for the classical weight function Wf (x). To illustrate
the result, we note that for the Lebesgue measure (W,(x) =1 or u=1/2) the
uniform convergence on B? holds if and only if §>d/2, while the pointwise

convergence holds in the interior of B¢ whenever 6> (d —1)/2.
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2.3. Orthogonal expansion for w,, on [—1,1]

The necessity of Theorems 2.1 and 2.4 will be proved by choosing some special
points on the boundary, which reduces the problem to the case of one variable; in
fact, it reduces the problem essentially to the Cesaro summability of the generalized
Gegenbauer expansion associated with the weight function w;, on [—1, 1] in (1.12).

Denote the Cesaro means of the generalized Gegenbauer expansion by si(w;,,#; f).
It can be written as an integral operator

W) ,mf> / K Wi;ux y)f( )W/l,,u(y) dy7

where the kernel K?(w;,) can be written in terms of the kernel K?(w;.,) of the
Cesaro means of the Gegenbauer polynomials,

1 1
KD (w3 %, 7) = ci¢y / / K (Wi 1ty + sV 1 = x2/1 = p2)
-1 J-1
x (1+0)(1 =211 =) de ds. (2.5)

This formula follows from taking the (C,d) means of the product type formula
(1.14) of the generalized Gegenbauer polynomials. As we mentioned in the
introduction, the (C, ) summability of the generalized Gegenbauer expansion does
not follow from that of the Jacobi expansion, even though the orthogonal
polynomials are related. As far as we know, the following theorem is new. It should
be compared with the Theorem 9.1.3 in [12, p. 246].

Theorem 2.7. The (C,d) means of the generalized Gegenbauer expansion of every
continuous function f converge uniformly to f on [—1,1] if and only if 6 >max{/, u}.

To prove this result, a standard argument shows that it suffices to prove that

1
T2 (w5 0 %) = / R3O0 03, ) (2.6)

is uniformly bounded if and only if 6 >max{/, u}. The sufficient part follows from
taking d =1 in Theorem 2.4. The necessary part is the consequence of the
Proposition 2.8 below.

Proposition 2.8. If 2> u, then T*(w; ;1) >clogn; if u> A, then T"(w,,;0)>clogn.
This proposition will be proved in Section 4, which essentially comes down to

prove a lower bound for a double integral of the Jacobi polynomials (Proposition
4.2) that is of interest in itself.
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2.4. Orthogonal expansion on the simplex

The connection between the A-harmonics with respect to (2.2) and orthogonal
polynomials with respect to W/ is established in [17]. Let us denote by {Q" }Iv\

KU

orthonormal basis of 77 (W ). We define functions ¥2" on R**' by

Yaz”(y) = rz”QZ(xf, ...,xd)7 where y = r(x,x441), r=1y|

=n

Note that (x7, ...,x3)e 7% and we define x,;; by [x|* +x2,, = 1. It turns out that
Y2" are homogeneous polynomials of degree 2n in'y, and they form an orthonormal
basis for #$1(h2;74™") which consists of A-harmonics of degree 2n that are
invariant under Z¢*! (cf. [17, Theorem 3.2)); that is,

AT 25 = {Y e ST (2): Y(dyi, ooy 2yan) = Y01, v}

In particular, the great circles x; = 0, 1<i<d + 1, on S¢ become the boundary of
T“. Formula (1.15) of the reproducing kernel Pn(Ww,x y) is obtained from (1.5)
using this connection (cf. [18, Theorem 2.2]).

The Cesaro (C,0) means S"(Wﬂj) and the kernel K?(W, W,x y) are defined
similarly as in the case of W,fﬂ on B, If one of k; is zero, then the (C, ) summability
has been studied in [18], while the proof essentially reduces to that of Jacobi
expansion on [—1,1]. However, in the general case of all x; nonzero, we need to
derive sharp estimates of the kernel Ko(W[ :x X%, Y), as in the case of the proof of
Theorem 2.1. Although there is similarity between the explicit formulae (1.5) and
(1.15), there is also a significant difference between their (C, 0) means. In fact, we are

able to derive the estimate for K°(W? :x,y) only under the following additional

K00
assumption on k:
d+1
Z (2Kk; — [ki])=1+ min x; with g =44, (2.7)

P 1<i<d+1
where [x] stands for the largest integer part of x. Consequently, our result on
summability holds also under this assumption. We should like to point out that
assumption (2.7) excludes only a small range of the parameters. Indeed, if one of the
parameter, say x; or y, is 1/2, or if one of the parameter is > 1, then (2.7) holds. In
particular, it holds for the unit weight function (x; = ... = k441 = 1/2). Our result is
as follows.

Theorem 2.9. Suppose the parameters of W, satzsfy (2.7). Then the (C,d) means of
the orthogonal expansion of every contlnuous functzon with respect to W{ . converge
uniformly to f on T? if and only if (2.4) holds.

Corollary 2.10. Suppose the parameters of W, I satisfy (2.7). The (C, ) means of the

orthogonal expansion of [ for WKT# converge to f in the LP( W,ZH, T%) norm, 1 <p< o,
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or C(T) norm for p = oo, if (2.4) holds. Moreover, condition (2.4) is necessary for
p=1landp= 0.

The proof will show that the necessary part of the theorem holds without the
condition (2.7). Naturally, we expect that the sufficient part also holds for all ;>0
without condition (2.7). This is indeed the case if at least one k; = 0, as proved in
[18]. The sufficient part of the theorem is not proved only for some of the cases in the
range O<k; <1, 1<i<d+ 1, and 22?;’1] ki <1+ min;¢;<q+1 %;. In the case that all
K; are the same, this could happen only if 0<wx;<1/(2d + 1).

For the pointwise convergence, the result similar to Theorem 2.6 holds with the
boundary becoming the natural boundary of the simplex. However, a stronger
condition on the parameters is needed in this case, which is

d+1
> (ki —[ki)=1 with = rqp. (2.8)
i=1

We note that this condition is satisfied if two or more of the parameters lie in the
interval [1/2,1), which include the case of unit weight function.

Theorem 2.11. Suppose the parameters of WKT . satisfy (2.7). Let [ be continuous on

T If 6>(d —1)/2, then the (C,5) means of the orthogonal expansion of f with
respect to W,Z . converge to [ for every point in the interior of T. Moreover, the

convergence is uniform over each compact set contained in the interior of T?.

Again we expect that this theorem holds without condition (2.7). To illustrate the
results, We state the case of unit weight function W(x) =1 as the following
corollary.

Corollary 2.12. The (C, ) means of the orthogonal expansion of every continuous
function f with respect to the unit weight function W(x) = 1 on T¢ converge uniformly
to f if and only if >d — 1/2. Furthermore, the (C, ) means converge to f uniformly
over each compact set contained in the interior of T if §>(d —1)/2.

This is the case of x; = 1/2 for 1<i<d and u = 1/2 in the theorems.
Much of the difference between orthogonal expansions on 7¢ and those on B can

be seen already in the case d = 1. For W72, the case d =1 is the generalized

Gegenbauer weight (1.12). For W,f .» the case d =1 is the Jacobi weight function

[+ p+2)

W) = 24P (e + 1B+ 1) (=040

defined on [—1,1]. The corresponding Jacobi polynomials are customarily denoted
by P,(f’ﬁ )(t). Let p,(f‘ﬁ ) denote the orthonormal Jacobi polynomial which differs from
P,(;“’ﬁ) by a constant (cf. [12, (4.3.4), p. 68]). Denote the Cesaro means of the Jacobi
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polynomial expansion by s (w( “$); £). It can be written as an integral operator
o (WP f / FOVK (WP x, y)w B (y) dy,

where the kernel K?(w*#);x p) is the (C, ) means of the nth reproducing kernel

K, (w®B: x, ) = S0 pP (x)p*P) (). The necessary part of Theorem 2.9 will be
proved using the (C,J) summability of the Jacobi expansion.

2.5. Further comments

As we mentioned in the introduction, the (C,0) means of the A-harmonic
expansion for 4, in (1.2) and any finite reflection group converge uniformly if (1.7)
holds. Restricted to the group Z¢, condition (1.7) becomes 6> (d —2)/2 + |«|,.
Hence, Theorem 2.1 shows that condition (1.7) is not sharp in the case of Z‘z‘l . This
naturally suggests that condition (1.7) is not sharp for other reflection groups.
Although this is likely the case, the lack of the explicit formula for the intertwining
operator ¥ makes this problem inaccessible at the moment.

We have found the critical index for these classical type weight functions on S~ !,
B? and T?. There are many other questions that one may consider; for examples,
summability below the critical index, almost everywhere convergence, various
multiplier type theorems. For further study, however, more delicate estimates of the
kernel functions are likely to be necessary and considerable difficulties will have to be
resolved. In this respect, the estimate for the Jacobi expansion in [2] may be helpful.

Our results show that the summability of orthogonal expansions on B¢ and that
on T< have similar behavior, and the critical index in both cases look to be the same.
This, however, should not leave the false impression that the behavior is a typical one
for other family of weight functions on R?. The other cases that have been studied so
far show significant differences in both results and proof. We refer to [10] for the

(C,8) summability of multiple Jacobi expansion on [—1,1]%, and to the monograph
[13] for the multiple Hermite and multiple Laguerre expansions.

3. Proof of the main theorems

Throughout the rest of this paper, we denote by ¢ a generic positive constant
whose value may vary in different occurrences. We will also use the convention A ~ B
which means that there exist positive constants ¢; and ¢, such that ¢; <|4/B|<c;.

For the proof of the sufficient part of Theorem 2.1 the following estimate is
fundamental.
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Theorem 3.1. Let X = (|x1], ..., |x4|). For x,yeS? ! and 6> (d — 2)/2,
[T (ol 7% =5+ m2) ™
67(d72)/2(|i — ¥+ n*1)5+(d/2)
ITL (ol + X =3 +n2)™
n(|x =] +n1)

K2 (h2;x,y)|< ¢

The proof of this estimate is rather involved and long, we delay it to Section 5.
Below we use it to prove the sufficient part of Theorem 2.1. Note that the estimate is

invariant under the action of Z‘ZI. We denote by Si the positive quadrant of S¢; that
is, 89 = {xe 8% x1 >0, ..., x,>0}.

Proof of Theorem 2.1 (Sufficient part). The proof amounts to showing that
LS x) = [ KR ) dofy) <M.
SL/ 1

where M is a constant, for all xe S?~!. Using the estimate in Theorem 3.1 and the
fact that the estimate is Z;’ invariant, we only need to establish the inequality for

xeS% ! and we can restrict the integral of I,(S7') to S Let x=
(x1, ...,x4)€S%! be fixed. Then by Theorem 3.1,
d-1. ¢
L,(S' 7X)<m
i _ IR
x [T oy =yl +n72)™ l_l[ i do
doi 1\0-+(d/2) Vi
s (Ix—yl+n")
2 —2\—Kj
/ H] (g X =y AR ﬁ i do.
st ()x —y[+n1) =R

In the following, we use the notation 1,1(E ;X) when the integral region is restricted
to a subset £ of S°!. Let / be the index for which x; is the largest element in x.
Then x;>|x|/vd=1/vd. Without loss of generality, let us assume /=d.
Let Sy, <0 = {yeS’": yy<o} and define Sy, -, similarly. If 0<y,<1/2V/4d,
then |x — y|>|x; — y4|>1/2V/d, and the second integral is bounded by a constant.
Hence, we have

—0+(d—
IH(S{}(i\l/Zf}a x)< en +(d—2)/2

d-1
- 2%, -
x/ plli=xa II ¥y de(y) + en” <e.
s¢t =1

If y4>1/2v/d, then |x4y4|>1/2d so that the term involving x,y, is bounded by a
constant. Let x' = (xi, ...,xs_1). We note that |x|* =1 — x3<1—1/d. Using the
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elementary inequalities [x — y|>[x" —y'|, and |y'|<1 —1/4d for yeS, sz, and
d-1

changing the integral over S
{y([ =

: d—1
1/2v3) to an integral over R{ ™", we conclude that

(S, 211203y %)

d—1 _ CoN—K; g
< /Hjl (xju; +n l‘x/_‘“H_n 0 ﬁ ;> du
n()—(d—2)/2 B (|X/_u|+n_l)()+(d/2) 7

Jj=1

1—1 2 _O\N—Kj d—

C H;’:l (xjuj =+ |X/ - ll‘ +n 2) a 21cj

+ - d H |u/| du,
nJp (X" —uf+nt) =

where B = {ueR’": Ju/<+/1 — 1/4d}. We denote the two integrals by /;(x) and
I(x), respectively, and estimate them separately.
In order to estimate 7;(x), first we claim that for u,x’e Ri‘l,

(1x' = ul 1) o+ 71X u) =7 /4.
Indeed, if x;>u;/2, then simply drop |[x' —u| terms; if x;<u;/2, then use the

inequality |X' —u|>|x; — uj|>u;/2 and drop the x;u; term. Using this inequality we
see that

1 (x) < en 0@/ 21kl —xa / 1
B

(X' — u] + - 1) HATRT du

Let 0 =0 —(d—2)/2— (||, — x4). Enlarging the integral domain from B to
{y: |xX' —u|<1}, we conclude that

L(x)<en™® / !

wou<i (|X —u|+n1)

1
pot (ul )

1 n
1 dt
:cn“’/ ,d—27+171 drgc/ —
0 (r+n=1)77 o (147

which is bounded uniformly in # if ¢>0. This gives the desired result since (2.1)
implies ¢ > 0.
To estimate I>(x), we use the elementary inequality that for x',ue R*"",

o+d—1 du

ity + X =P =0+ [ — wl? /2 = (5 + ) /2207 2.

Using this inequality and enlarging the integral domain as before, we conclude that
1

L(x)< cen™! / ——————du

B (X' —u|+n1)

1 n
1 1
<cn! / rdfziddréc/ ﬁdtéc.
0 (r+n71) o (147

Putting these estimates together, we see that I,(x) is bounded uniformly in » under
condition (2.1). This completes the proof of the sufficient part of Theorem 2.1. [
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For the proof of Theorem 2.3, a different estimate is needed for x not on the great
circles defined by the intersection of S?~! and the coordinate planes {x: x; = 0}.
Recall that the interior region bounded by the great circles is denoted by Sffnl We
use the notation ¢(x) to denote a generic function that depends on x only, whose
value may vary in different occurrences.

Theorem 3.2. Let xe S, Then for (d —2)/2<5<d/2 and ye S~',

nt

() if |yj|<|xj|/2 for some j, then

QU

KD (s X, y)| < c(x)no+@=2)/ H (il +n7 ")

@) if for all 1<j<d, |yj|>|x;|/2 and x;y;>0, then
K302, )| < 22 (x| 4 )0

(iii) #f for all 1<j<d, |y;|>|x;|/2 and x;; <0 for some i, then there exists a constant
n >0 (independent of y), such that

K3 (s x, y)| < c(xpn 22 (g — y| 40700020,

Again we delay the proof of the estimate to Section 5 and go on with the proof of
the main theorem.

Proof of Theorem 2.3. Let 0> (d —2)/2. We may assume that §<d/2, since if
(C,3) means converge, then (C,d) means converge for all 5>Jy. Let xe S ! be
fixed. For each p>0, we define

E, = E,(x) = {yeS" " |y —x|>p}.

A standard argument shows that, to prove the theorem, it is sufficient to prove that
for 0>(d —2)/2 and p>0

L,(E,;X) ::/E |KO(h2;x,y)|K2(y) do—0 as n— oo (3.1)

P

and
LS = [ K IR do< ()< oo (3:2)
yesd-1

To prove (3.1), we define three sets corresponding to the cases in Theorem 3.2:

Fi = {yeS"": |y|<|x/2 for some j},
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Fy = {yeS? " |y]|>|xi/2 and x;3:>0, 1<i<d},
Fy = {yeS" ™" |yi|>|xi|/2, 1<i<d, and x;y;<0 for some j}.

Recall that 2(y) = Hfi:] lyi|*". By (i) of Theorem 3.2 we have

d

In(EpﬁFl;X)S C(x)n—(5+(a’—2)/2 /Sl | (|yi| + n—l)—m|yi|2m do
- 1

i=

< C(X)n75+(d72)/27

which goes to 0 as n— oo, since 6> (d — 2)/2. By (ii) of Theorem 3.2 and the fact
that |x —y|>p for ye E,, we have

L(E, N Fy;x) <c(x)n0d=2)/2 / hi(y) do,
§d-1
which again goes to 0 as n— oo . Finally, by part (iii) of Theorem 3.2 and the fact that

h2(y)<1, we have

I(Ep 0 F5X) < e(x)n #0202 /S (R ) R (y) doo

<c(x)n~0Hd=2/2 / (Ix— y|2 + n*2)7<5+d/27">/2 do,

d—1
S¢

while passing to Si‘l allows us to replace ¥ by y. We then enlarge the integral
domain from 7! to S?~! and use the well-known formula for / : R> R,

1
[, 1y dot) =ous [ 161 -5) as, (3

where xe S9!, and the fact that |& —y|> = 2(1 — (X,y)) to conclude that for
O<n<o+d/2,

/ (% — y? 4 n-2)"@H2072 4,
st

1 (1— Sz)(d—3>/2
<w4-2 /71 (-5t n72)(5+d/2*11)/2 ds

1 _ \d-3)/2
<C/ (I —y) ~ s
o (1 —s—i—n*z)(‘mj/zfﬂ)/2
nd=@=2/221 if § — (d —2)/2 — >0,
<c logn ifo—(d—-2)/2—n=0,
1 if 6 —(d—2)/2—n<0.
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Consequently, we conclude that

n" if 6—(d—-2)/2—n>0,
L(E,nF3;x)<c(x){ n 0422 logn if 6 —(d —2)/2—n=0,
pooHd=2)/2 if 6—(d—2)/2-n<0,

which goes to 0 as n— oo. Putting these estimates together and noticing that S7~! =
Fy UF, UF;, we have proved (3.1).

To prove (3.2), we again use the estimate of the kernel in Theorem 3.2. Since in the
above estimate of 1,(E, n F1;x) and I, (E, n F3;x) we did not use the fact that ye E,;
these estimates hold for I,(Fj; x) and I,(F3; x) as well. In particular, these two terms
are bounded. Hence, we are left with the case I,(F>;x). From (ii) in Theorem 3.2, it
follows that

1, (F x) (x40 /S (x =yl ) (y) doo.

Estimating the integral by the use of (3.3) as we did in the case of I,(E, N F3;X), we
obtain

_ )2
0+d/2)]

1
IH(FQ;X)< C(X)n75+(zl72)/2 / (1
-1 (1 =s+4+n72)

< C(X)n—(5+(d—2)/2 L0 d=2)/2 — C(X).

2ds

Consequently, (3.2) is proved. The proof of Theorem 2.3 is complete. [J

Proof of Theorem 2.4 (Sufficient part). This will follow from that of Theorem 2.1,
and a more general result has been proved in [20]. We shall be brief. Let

K,‘z(W,fﬂ;x,y) denote the (C,d) means of the reproducing kernel associated with
W,fﬂ. Using the integral formula (see [16, (2.5)])

[ s@dos= [ oty /1= 1)+ atv. /1~ 1P dyl

with g(y, ya1) = K (WL, )| TIL, [ yasi|* we conclude that

1 0
| KOVExWE W dy =5 [ IKIOVEx I, (2) da

where z = (y, y4+1). On the other hand, taking the (C, ) means of (2.3) gives

K}i(Wfﬂ, X, y) = [Krf(hlzc,w (Xv xd-H)a (ya)’d+1))
+ Krf(hizc,y; (vadJrl)? (y> _yd+l))}/2
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with xz01 =1/1 — \x|2 for Ay, in (2.2). Hence,
KA WE X IWE (3) dy

<2/ ‘Ké( K'uv(x xd+1) )|hKﬂ( ) z,

from which we conclude that the sufficiency of Theorem 2.4 follows from that of
Theorem 2.1. 0O

Evidently, the same argument also shows that Theorem 2.6 is the consequence of
Theorem 2.3.

Proof of Theorems 2.1 and 2.4 (Necessary part). The case d =1 reduces to the
generalized Gegenbauer expansion. So we assume d>2. Since the proof of the
sufficient part of Theorem 2.4 follows from the sufficient part of Theorem 2.1, the
necessary part of Theorem 2.4 will imply the necessary part of Theorem 2.1. Thus, it
suffices to prove the necessity of (2.4) in Theorem 2.4.

Let 411 = p. We first work with the case that x; = minj<;<q41 k;, Where j is an
index between 1 and d. We may assume j = 1. Setting y = e; = (1,0, ...,0) in the
reproducing kernel (1.11) and using formula (1.14), we obtain

K00

9 1 .
Pn(WB ~X’e1) :C’qnﬂiﬂ/ C,S}y)(xltl)(l +Z])(1 _ l%)k171 dt]
-1

C —K1,K1 (1)6’(1}’—1»‘1%1)()61)’ (3.4)

where y = Zld+1l ki + (d —1)/2 (u = x44+1). Consequently, recall the notation w,,, in
(1.12),

K(’(W X, e1) = K,f(wy,,\.hm;l,xl).

K0

Hence, if 6 = y — K1, then changing variables x; = u;1/1 — x3 for i = 2, ..., d, so that

the integral on B? reduces to an integral of one variable, we get

)
[ KA ix,en 2, (x) dx
5 d 2 2 1/2
- / R3O0, s L) T b (1= 1Py
B i=1
1 o
= C/ |K3(W1’—K1~,K1§ L)Wy ey (X1) dxy = CT;?(Wv—Kl,KM 1),
-1

where the value of the constant ¢ can be determined by setting n = 0. Hence, since
0 =79 — K1 =K, the desired result follows from Proposition 2.8.
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We are left with the case that 4 = k44 = minj¢,;<441 k;- In this case, takingy =0
in (1.11) and using (1.14), we obtain

1
Pl ’O):C”njy /1 O sy/1 = IxP)(1 = )" ds

— C'}(lﬂ,"/—u) (0) C‘ﬁlw—u) (|x|)

Consequently, we conclude that

KO(W;?;A x,0) = KS(WHJ’*H; x|, 0)

Hence, if 0 = y — u, then using the polar coordinates we obtain

1
ROV 0w, (dx = [ I3 0450.0)(0)
=T Wiy 0).

Hence, since 6 =y — u>pu, we can use Proposition 2.8 to finish the proof. [

Corollary 2.5 follows from the fact that the L' (W2 ; BY) norm of S)(h;f) is the

same as the C(B?) norm and the standard argument of the Riesz interpolation. The
proof of Corollary 2.12 follows similarly.
The proof of Theorem 2.7 and Proposition 2.8 are given in the next section.

In order to prove the theorems on the simplex 7, we need sharp estimates of the
kernel K)(W] ;x,y). For x,yeT?, define &= (\/X1,...,\/Xa,\/1 = x[;) and { =
(VP15 --s3/Va, /1 — |y|;)- Recall that [x] denotes the integer part of x.

Theorem 3.3. Assume 6 + 31 (i; — [i]) = (d + 1) /2 with K41 = . For x,yeT?,

Hd+l ( ,—x]y]+n l‘é €|+n72) Kj
—@=-N2(|E = ¢| +n- )0+(d+1)/
n Hd+1 (\/XJYI +1& - C| +n_2)
(‘f _ C| +n_1 d+1

K (Wl sx. )< e

The proof of this estimate is being delayed to Section 5. Here we use it to prove
Theorem 2.9.

Proof of Theorem 2.9. To prove the sufficient part, we fix a J satisfying (2.4); that is,
0>(d —1)/2+ |k|;, —min; <;<g4+1 k; With g = k411 Then condition (2.7) implies that
84+ (ie; — [i]) > (d + 1)/2, so that the estimate in Theorem 3.3 can be applied.
Replacing x by {x}* == (x,...,x3) and y by {y}* = (3}, ...,)2) in the estimate of
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Theorem 3.3, we get

[T (opy+n & = § | +n72) 7

(3 -/
KWL {xP {yP)I< e DRy 1T

[T (omy+ 18 = §/ +n2) 7

]
(% =y |+ )]

where X' = (x|, ..., x4, Xq41) and Y = (y1, ..., V4, Yas1) both are points in S?. The
right-hand side is the same as in the estimate of Theorem 2.4 with d replaced by
d + 1. Therefore, using the formula

f(u%a"wu?hrl)da)(u):z f(yla'”7yd51_|y|l)
sd Td
dy
yiyal =Ty

which can be easily verified (see, for example, [17]), we conclude that
[ KWL ) dy
1
=3 [ KOV P ) doy). (33)

Consequently, the proof of the sufficient part follows from that of Theorem 2.1.

We now prove the necessary part. First consider the case x; = min|;<q1 k; for
some j with 1 <j<d. We may assume j = 1. Using [12, (4.3.4) and (4.1.5)] it is easy to
verify that

2L ) = pp 2D (p 2 2 - 1), (36)
Taking (C, ) means of P,(W[ ;x,y) in (1.15) and using (3.6), it follows that
K (W ,:x.y)
o d+1 .
— e /[_“]M KO D102 - ) T (1— 2 a, (3.7)

i=1

where z = \/Xiyit1 + - + /Xapata + /1 — [X|[;\/1 — |y|;ta41, and we have used
x|, = Z;”ll Kk; (recall u = k441). In particular, taking x =e; = (1,0, ...,0), we get

KX(W] e1y)

K0

d-2 1
= ¢y, / Kf(w(\KHTai); 172)}1,% —1)(1 - lf)""l dr,.
-1
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By definition K°(w*~1/2=1/2):1 s) is the Cesdro (C,5) mean of the polynomials
pUER (Y2 (). Using (3.6) and (1.14), it follows as in (3.4) that

1
A—1/2,— A—1/2,— —
() / e == ar

2k+4 1 . -
= / /(1 — 2y di
~—1.1 ~A—1,T
= G (1) EL ()
:p(g_r_l/Z,r—l/Z)(l)piﬂ,—r—l/Z,-ﬂ—l/Z)(2y -1),

where the last equality follows from (1.13) and checking the normalization constants.
Consequently, this shows

. . 1 1
KW e y) = K (w7272 1,2y, — 1),

where /1 = |k|, + (d — 1)/2. Hence, changing variable y; = (1 — y)u; for 2<i<d, we
get

[ KO0 ey dy

I 11 , 11
=c / |K2 (w7 2ki=2) s ) w2972 () dir.
-1

Therefore, it follows from the summability of the Jacobi expansion that the
orthogonal expansion with respect to WKT . converges at e; if and only if 0>/ — k)
([12, Theorem 9.1.4, p. 246]).

We are left with the case u = k1 = min) ;<441 &;. In this case, taking x =0 in
(3.7) and following the same argument as above, we obtain

. b d=2 _
K)(:(WKTlU(Ly) = Cryyy /;1 K}?(W(‘K‘l+ 2 1/2); 1)2(1 - |y|l)t2 - 1)
% (1 o t2)’\'d+1*1 dt
_ g9 (K*Kd+1fl~,l<u+1fl). _
=K (w 2 2Y:1,1=2y|,).
Hence, changing coordinates y = sy’ with |y'|, = 1 (the /' polar coordinates), we get
[ K 0w ) dy
1 d— )
=c / S‘K‘]_Kd+l+TZKS(M}(/“_Kd—l_%’cdﬂ_%); 1,1 —2s)
0

ool
x (1 —s)""72ds

1 0 (1 (A—Ka - 1*l) (A—Ka s 1*1)
¢ | K (w TRt TR ) ) | TR TR T (1)
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where the constant can be determined by setting n = 0. Hence, the necessity of
0> A — K411 follows as in the previous case. [

For the proof of Theorem 2.11, we need the pointwise estimate of the kernel. The
statement, however, is simpler in this case. As in Theorem 3.3, we again use the

notations ¢ and { associated with x and ye T, respectively.

Theorem 3.4. Let X be a point in the interior of T?. Assume (2.7) with k4.1 = p and
(d—1)/2<6<(d+1)/2. For yeT,

() if y;<x;j/2 for some j, then
d+1

K Lsx,y) [ <e)n DR TT (Vo +n )™
i=1

(1) if for all 1<j<d, y;>Xx;/2, then
‘KO( K'u’x y)|<c( ) 7(3+(d71)/2(‘£_c|_|_n—1)—5—(d+1)/2.

The proof of this estimate is again being delayed to Section 5. Here we use it to
prove Theorem 2.11.

Proof of Theorem 2.11. As in the proof of Theorem 2.9, we replace x by {x}2 =
(x},...,x2) and y by {y}* = (3, ...,»2) in the estimate of Theorem 3.4, and use the
notation X’ = (x1, ..., X4, X441) and Y = (1, ..., V4, Ya+1) which are in S, This gives
an estimate that takes the form:

(i) if y7 <x7/2 for some j, then

K (W8 {xF (v < expn oM/ H i+n )™,

(ii) if for all 1<j<d, y;>x;/2, then

KT 3 {2, (1) | <e(x)n @02 (! -y )02,

where we can assume that x; >0 and y; >0 for 1 <i<d + 1. Note that the estimate in
(1) is the same, with d + 1 replaced by d, as that of (i) in the proof of Theorem 2.4
and (ii) is the same as the first term in the estimate of (ii) in the proof of Theorem 2.4
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(the assumption x;y; >0 holds automatically here). Therefore, rewriting (3.5) as
[ KWL Py 0) dy

__ nd+1 0 T . 2 2172 / /

=200 [ IRIOVL (38 VIR dofy),
since the integrand in the right-hand side is even for each of its variables, we see that
the proof of this theorem follows as in the proof of Theorem 2.5 and it is easier since
we only need cases (i) and (ii) here due to the fact that x; and y; are all
nonnegative. [

4. Generalized Gegenbauer expansion

In this section we prove the results on the generalized Gegenbauer expansion.
Essentially we give a proof of Proposition 2.8, since the proof of Theorem 2.7 follows
from it. Indeed, as indicated in Section 2.3 the sufficient part of Theorem 2.7 follows
from the case d = 1 in Theorem 2.4, and the necessary part follows from the lower
bound of T#(0) and T%(1) in Proposition 2.8.

To prove Proposition 2.8 we first recall a formula about (C, 0) means of the Jacobi
expansion [12, p. 261, (9.41.13)]. Recall that the Jacobi weight function is denoted by
wlh),

Lemma 4.1. For the (C, ) means of the Jacobi polynomials,
K306, 1,0) = (e, B0, m) PP ()

n

+

= oo B8, mKTT (w1,
=1
where the coefficients are given by
e( B.6.n) = Fro+nH(n+oa+p+0+2)In+1)
T a B I (o + 5+ 2)T(n+ 0+ DI (n+ 4+ 1)
I2n+a+p+0+3)
I'2n+o+pf+26+3)

A oy [(ONT(m+j+ 6+ DI 2n+o+f+0+3)
(@ B,0,m) = (1Y (j)l“(n+5+1)r(2n+j+a+ﬂ+5+3)'

Using the fact that T'(n +a +1)/T(n+ 1) = n*(1 + O(n™ ")), it is easy to see that
(o, B, 3, n)| ~n*1=%; moreover, as shown in [1,3], |¢;(e, B, 6,n)| <¢j > P9~ and it is
bounded as a function of n.
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Proof of Proposition 2.8. First it follows from (1.14) that
SIEEI () EP (x) + CH0 (1) EP (=)
= i) (0)CHA (V1 — ¥2).

Hence we have

: 1
d
Tn (W/l,u; 1) = E ‘/7

1
- / IR 0030, /T3P 0)

1
- / K 0530.9) 0 0) dy = T(0,10).

1
1 K (Wi 1,y) + K (Wi 1, =) [ wiu(v) dy

Thus to finish the proof, we only need to prove that T#(w; ,;0)>clogn when u> 4.
In the following we assume that 6 = pu>/. In this case, using (2.5) and Lemma 4.1,

1
K;’(WM;O,y) =c; / K;I)(M//H,#; 1,sy/1=32) (1 — sz)i_1 ds
—1

1
_ opht1/2-0 / U271/ (T 2)(1 = 2 dis
-1

o0

GA+u—1/2,24+u—1/2,8,m)K" (w;,;0,y).

+
j=1

j
Forj>=1,0 +j= u+j>u, it follows from the sufficient part of Theorem 2.7 that the
integral fil |K2% (W), 0,)|w;.u(») dy is uniformly bounded and

o0
A+ = 1/2, 04+ u—1/2,6,n)<c Y j 23 < o,
1 j=1

J
Hence, since 6 = y, it follows from the definition (2.6) of T* that

T,‘l)(wm; 0)

PR
:C}’l+2/
0

1
x [yPH(1 =y " 2dy + O(1),

where the outer integral is taken over [0, 1] instead of [—1, 1] since the function is

o0

| T
/ P;A+2M+2,).+,u 3) (s M)(l _Sz);fl ds

1

even in y. Changing variable ¢ = /1 — »? in the outer integral, we obtain
L ! U Og2utl it
T) (w5 0) = en* 2 / / P;(1 i) (st)(1 — 2+ ds
0 _

1
27 2 t—l
x (1 = &Y 2dr + 0(1).

Hence, we need to derive a lower bound on the double integral of the Jacobi
polynomial from below, which will be given in the next proposition. [
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We are left to derive the lower bound of the double integral of a Jacobi
polynomial. The difficulty lies in the fact that we cannot take the absolute value
inside the inner integral. The task requires rather delicate estimate.
Proposition 4.2. Let a=A+2uandb =71+ pu—1. Then

1
/

=cn

1 1 1

a+5,b+5 _ _
/1 P 1) (1= 2V ey (1 - 2y dy
—i-1/2

log n.

Proof. First we assume that 0 <A< 1. Let us denote the left-hand side by ,. We start
with an obvious inequality followed by a change of variables:

e I L A | -
In>c/ / P2 ()1 = 2y g
0 —

1
1—dn?
-
0

where d is any fixed positive constant. We need the asymptotics of the Jacobi
polynomials as given in [12, p. 198],

yu(l _yz)u—1/2 dy

(1 - yz)ﬂ_l/z dy7

Vo aadpid
—y

1
PP (cos 0) = n"2k(0){cos(NO + 1) + O(1)(nsin 0) '}
for dn ' <O0<m —dn', where N =n+ (a4 f+1)/2,

1 1
N2 0\ n
k(0)=n"2 (sm 5) (cos 5) , T= —E(oc +1),
(a+%.b+%)

and d is a fixed positive constant. Using the asymptotic formula for P, (»), we
see that the error term is

Ey(u) = 0(1)n 3 (sin 0)! (Sin g) ~a-1 (COS g) e

a+2 b+2
~3

— 0 (1 —u) T (1 )2

upon using u = cos 6. Hence, changing the order of integrals, we see that
g i1 1/2
| Bnt? =y a1 -2y

/ldl’Lz
0 -y

3 1—dn™2 1
<en2 / / 07 =)y =)y
—1+dn=2 J|u|

du

at2 b+2
(I—u)2 (14u)?2

X
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7; 1—dn2 (1 N uz))nhu—l/z
<cn 2 / B = - du
—14-dn2 (l—u) 2 (1+M) )
3 . . |
<cn_§[1 e n"“] _ cn_)‘_i,

where in the last inequality we have broken the integral into two parts, one over

[~1+4dn=2,0] and the other over [0,1 — dn~?], to get the proper estimate. Hence,
1,1

using the asymptotic formula for Pﬁ,a+§’b+§>(u) we conclude that
1—dn™? )
InZC[’fl/z/ M, ()[(1 = )2 dy =712, (4.1)
V3/2

where we define M as the integral of the main part of the asymptotic formula,
namely

7 cos(NO+ 1) s el
M,(y) = / —u”)" du
(y) _y (sin g)a+1 (COS g)b+1 (y )

with u = cos 0. Note that in (4.1) we have taken the outside integral over smaller
range [v/3/2,1 —dn?], which implies that if y =cos¢, then cn~'<¢p<mn/6.
Introducing the function

(cos? ¢ — cos? 0)*!

~ b
(sin§)*(cos )

19(0) =
and changing variable u = cos 0, we can write M,(cos ¢) as
n—¢
M, (cos ¢) = / Jo(0)cos(NO + 1) d0.
U

In order to give a sharp lower bound of M,,, we denote the zeros of cos(N6 + 1) by
0y; that is,

Ok = O0rn = ((k+1/2)n —1)/N.
We assume that ¢ lies between 0;_; and 60y, that is,
Ok 1 <Pp<O, Kk fixed.

We divided the estimate of M, into several steps, starting with

Claim 4.1. As a function of 0, f;(0)<0 on ¢ <O<m/2.
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In fact, this follows from the explicit formula of f;(0) given by

(cos? ¢ — cos? 0)*2

(sin %)”1 (cos g)b“

J4(0) =

X {(/1 — 1)cos 0sin*6) — % (cos® ¢ — cos? 0)[((a — b) + (a + b) cos 0)]},
and the fact that a>5b, A<1 and cos >0 in the given range of 0.
Claim 4.2. For 0<¢<n/6,

’ /“4’ £5(0) cos(NO + 1) dO| < cn™ ' (sin(6x — ¢)/2)" " (sin p/2) "
n/2

To prove the claim, we further divided the integral into two pieces. First we have,

n—¢
’ J(0) cos(NO + 1) d@’
n—0

¢ A 2 gyl
<“Wj/ (cos” ¢ —cos” 0) " db
sin —0

¢ br 0—¢ . 0+¢\""
<(51m45/2)b/¢ (sm 5 sin 7 ) do

<c(sin(0y — ¢)/2) (sin ¢p/2)" !
<en”(sin(0h — 9)/2)"" (sin ¢/2)" ",

The second piece is integral over [n — 0y, 7/2]. Integrating by parts gives

n—0
J(0) cos(NO + 1) dO
/2
1 n—ﬂk TL*@/(
=—£4(0)sin(NO + 1 — 1 (0) sin(NO + 1) dO.
N OsNo+9| Ty [ o) snvo )

Using the fact that 0<¢p<n/6, sin((n — 0x)/2) = cos(0x/2)~1, cos((n — 0k)/2) =
sin(0/2) ~sin(¢/2) and
cos® ¢ — cosz(n — 0k) ~cos ¢ — cos U
. Ok— . O+ Ok —9 .
~ > h
$in ———sin ———>csin——sin,
it follows that the absolute value of the first term is bounded by

¢ - =1 ¢ J—1-b
gn[<sm2) <51n2 +1].

TL—Hk

%ﬁp(@) sin(NO + r)}

/2
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For the second term, we use the formula for the derivative of f;(6) to show that its
absolute value is bounded by

7'[70/( 2 _ 2 =2
C[ / (c0s” ¢ — cos” 0) cos Osin® 0 do

n| Jwa o (sin g)"“ (cos %)b“

- I br1
2 (sin)*(cos "

n—0x 2 _ 2 -1
+/ (cos* ¢ — cos= 0) d@],

in which the first term is bounded by, using the double angle formula sin 6 =
2sin(6/2) cos(6/2),

c /”‘9" (cos?¢p — cos?0)" >

n Ju)2 (cos &)

sin 0 d0

c 1 =0k 1-2 .
<SS / (cos ¢ +cos 0) "~ sin 0 d0
n(sin%)" Juj2

L O—o =1y ¢ J—b—1
<ol @ .
<cn (sm > ) sin 2 ;

and the second term is bounded by, since A< 1,

T[—Hk
¢ 2 2 yi—1 do
—(cos” ¢ — cos” O, / _
n ( 2 n/2  (cos g)bﬂ

i—1 —b
Sg en”! <sin O 2_ ¢ sin %) (sin 92—]()

B O — ¢ J—1 ¢ J—b—1
1 _ —
<cn (sm 3 ) sin > .

Putting these estimates together, we establish the Claim 4.2.

Claim 4.3. There exists an >0, such that for €l = [0 — ¢/n, Ok),

‘ /n/2 £4(0) cos(NO + 1) dO| = c[n*(sin p/2)" "' —n71].
U

Let m denote the largest integer such that 0p<n/2 (m depends on n).
Evidently, 0,, —n/2~1/n. To prove the claim, we split the integral over
[¢,7/2] into three pieces over [¢,0k], [0k, 0] and [0,,, 7/2], respectively. First of
all, we have

/2
Jui(4) ::‘ /H 75(0) cos(NO + 1) d0

0<cen™!

/2 2 4 2 i1
<c/ (cos® ¢ — cos= 0)
0

. b
" (sin g)a(cos %)
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since 0< ¢ <n/6. We note the above estimate will not change if the integral is over
[0m—1,7/2]. Hence, we can assume that m — k is even. Then our second, and main
part, is given by

O
T2 (@) = ‘ Jf4(0) cos(NO + 1) d@’

0/(

/ J4(0) cos(NO + 1) do
j=k+1 01
$+0— ) >.
(—1 &dé
2 k+] )’/ ( sin

(m—k)/2 n .
(e (k42— Y-
> ) BT

Jj=1

b —
f¢<f+(k+§<]+2)n fﬂsmédé

N

(m—k)/2

> 1fE,

J=l1

2
~N2

L
where &, = % and n;€(0, 1) as follows from the mean value theorem and

Claim 4.1. Since the formula of f(6) shows that it is a sum of two terms of the same
sign, we can drop one term and get

2 e (cos—cos’ &)
Ina(9) 2455 1758125 (sin2)* (cos 3)"!

cos &, sin® &,.

Since en~!' <¢p<n/6 and 0,1 <P <0y, we see that & = 0, + O(1/n) = ¢ + O(1/n),

so that cos £, ~ 1, cos ¢ + cos &, ~ 1, and sin gVﬁ“5~s1n Then we have
in &= o SH+dyA-2
c ( 5 5 )
>
Jn‘2(¢)/ N2 (Sin% a1

i—l-a =2
> j\iZ (sm (g) (sin %)

Hence, using the fact that &, — ¢ <& — Op-1<¢/N, we conclude that
Jua (@) =en*(sin(¢/2))"

We note that this estimate holds for all ¢€[cn~!,7/6]. For the remaining case, we
assume that ¢ [0 —¢/n, 0;], where ¢ is a positive number whose value is to be
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determined. Then

O

Ju3 (@) ::‘ J5(0) cos(NO + 1) d@‘

¢
< ——>w ((; 37 /(b " (sin (9 = </>> sin (9 ; ¢)>“ do
< c(sin(¢p/2)) ™ 0k — ¢)* <ce'n*(sin(¢/2))"

Notice that the upper bound of J,, ; is the same as the lower bound of J,, saving the
¢* term. Choosing ¢ small but fixed so that the upper bound of J, is less than half of
the lower bound of J,,», we have proved Claim 4.3 upon combining the estimate for
J,171, Jn,z and ],173.

Claim 4.4. There exists an >0, such that for ¢l = [0 — ¢/n, 0r],

) ¢ A—a—1
M, (cos )= ¢ lnA (Sin 5))
J—1 A—b—1
—n! <sin L 2_ d)) <sin ?) 1 .

This follows as the consequence of Claims 4.2, 43 and b=2+pu— 1.
We are now in position to prove the proposition in the case of 0<A<1. Let p be

the largest positive integer such that v/3/2<cos 0, and ¢ be the smallest positive
integer such that cos 0,<1 — dn~2. Evidently, ¢<p, p = p(n)~n and ¢ = q(n) ~n. It
follows from (4.1) and the Claim 4.4 that

Li=c(A, — B, —n 712,

where

J

P ¢ A—a—1
A, =n""12 Z / ) <sin 2) (sin )™ d¢p
j=q YU,

0

)4
> en+-12 Z /
Jj=q J

»
> 12 ijl >en 12 logn,

Jj=q

. (sing) ™" dp

in which we have used the fact that « = 4 + 2u, and

=1 G\ sin=—— sin (sinp)™ d¢
j=q 70y
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p 0
<oy g / (09" dg
j=q .

I"n

P
—3/2-i— ;
<en u E Vs
J=q

< en 12,
Consequently, we conclude that I,>cn"'/? log n, which gives the stated result for
0<i<l.

If A =0, then I, in limit form reduces to

1
I, = / ‘P,(12H+1/2"u71/2)(y) _’_Pl(12,u+1/27u71/2)(_y)|(1 _yZ)ufl/2 dy
0

1
> [ ppr ) -2y R ay
0

1
_ /0 |P£12u+1/2.y71/2)(_y)|(1 _yz)ﬂ—l/z dy

By the estimate of the Jacobi polynomial (see Lemma 5.3 below), the second integral

has the upper bound ¢n'/2; the first term is asymptotically n~/2 log n by Szegé [12,

(7.34.1), p. 173]. Thus, I,>cn~/? logn for /. = 0, which agrees with the case of 21> 0.
Next we turn our attention to the case 1> 1. Let r = [4]. Using the identity

(a+3 b+) 2 d (a-1p-1
P ) =— P22 4.2
n (y) n+a+b+ldy n+1 (y) ( )
and integrating by parts, we get
y 1 1 r
(a+35+3) P (=2)
P, YY) (5 — P du =—
/y () v )o [[-(n+ta+b+2—1i)
y 1 1 r
(a+5—rb+5—r) d —
< [P ) G 07 )
—y

Using induction if necessary, it is easy to verify that
dr r A—r— A—r
S0P =) T = A (P = )T 4 ) (0 - )

where 4 = (=2)'T(1)/T(A—r) and g(u) is a polynomial. We conclude that
y 1,1
‘ / P 0 -y an
-y

¥ 1 1 ; S
/ P ) (2 — a2y

=>cn" [

a+ )]b+ [4]) — [
\ / P AT (62 — 2y
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We then use the asymptotics of the Jacobi polynomials as in the proof of the case
0<Ai<1. Evidently, with A*=21—[1], a*=a—[A]=2"4+2u and b*=b—[A] =
A"+ u — 1, we can derive the lower bound (with log n) of the first part exactly as in
the case 0</l<1. Moreover, for the second part, we need to show essentially the

following estimate with 0<A<1:
1—dn? y )

L, = / P£a+1/2,b+1/2)(u)q(u) (y2 _ MZ)A du

0 -y

x (1 — yz)”*l/2 dy<en 12, (4.3)

To prove (4.3), integrating by parts for the inner integral (using (4.2)) gives

. <£ /l—afn2 /y pla=1/2- 1/2)( )i[ (u)( 2—u2)2} du
n== n 0 -y n+l du q y

x (121 ay;

then using the estimate of the Jacobi polynomial in Lemma 5.3 we obtain

1—dn?
L,<cn / / “/2 - u);‘fl du(l — y)”*l/2 dy
1—dn™?
< en? / (1= ) 212 g,
0
< <en 1,

since b<a,a>0and —a/2 +p—1/2=—-(A+1)/2> —1.
If 1 is a positive integer, we do integration by parts a number of times to get

y
/ P'(la+l/2,b+1/2) (u)(yZ _ u2)iﬁl du
-y
(=) '2ir(2)
M (n+a+b+2—i)

y- 1211712 -1 1/2—i,b+1/2—)
x[y Lt /2-b 1 /2-0) ) (it platl/2-ib1 20

.
_ / Pﬁ[zj:;l/Z Lb1/2— ;)( V(2 |,
.

where s(u) is a polynomial of degree 24. Thus,

In>£~|:/ |Pn<$1/27/1,b+1/2fi)(y)|yi—l(1 _yZ),u—l/Z dy

n/L

/0 L G (S o L

1 y .
_ / / Pt 2=ab 1220 5y )y
0

n+4
-y

(=R )
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Just as the case 4 = 0, the first term above has the lower bound cn*~'/? logn, and
the second term has the upper bound cn~*~!'/2. For the third term, integrating by
parts again by the use of (4.2), the inner integral becomes a sum of the terms

1 (41220541220 ) 1) (4 )

[T (n+a+b—i+2—i) "7

i=1

for j=1,2,...,24 4+ 1. Hence, applying the estimate of the Jacobi polynomial in
Lemma 5.3 again, the part of L, corresponding to each of these terms has an upper
bound cn*/2. This shows that L,>cn*"/?log n for 1 being a positive integer.
The proof of the proposition is completed. [

5. The estimate of the kernels for /#-harmonics

In this section we prove the estimates of the kernels of the Cesaro means for /-
harmonics given in Theorems 3.1 and 3.2. The proof of the estimates is rather long.
We will break the proof into a number of steps, starting with a series of reductions.

Since the Gegenbauer polynomial and the Jacobi polynomial are related by

n—+ A _ A— I— _
- C’(zl)(l) :p(). 1/2, 1/2)(1)p(A 1/2,4 1/2)(1), (51)

n n

it follows from the formula (1.5) of the reproducing kernel that
Kf(hi;x,y) =y / ) KS(lV(7y’y); Lxiyts + ... + Xayata)

[_lvl]L
d

< [T (0 +a)(1 = 2)""at, (5.2)

i=1

where y = |x|, + (d — 3)/2. The first step is to replace the kernel for the Jacobi
expansion by a sharp estimate. For this we use formula (4.1) repeatedly as in [9] leads
to the following lemma.

Lemma 5.1. For any o, f> — 1 such that o+  + 5 + 3>0,
J
K2 (w1, u) = Z bi(a, B, 8,n) PP () 1 GO (u),
7=0

where J is a fixed integer and

Gi(u) =" dio, B, 8, MK (WP 1,u);

J=I+1

moreover, the coefficients satisfy the inequalities,

[bj(, B8, m) | <en*™ 107 and |d(o, B, 3, m)| < cj IO
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Since the kernel function K (w(*f) 1 u) contained in the G term has large index
0 +j>J, it can be handled using the following estimate of the kernel function, which
is used in [1,3] (see Theorem 3.9 there).

Lemma 5.2. Let o, = — 1/2. Then if 0<o<a + 3/2,
|K5(W(a,[})’ 1u)|< cna+1/2—(5[<1 Cua n—2)7(6+a+3/2)/2
+ (1 +u+n2) B2,
ifo+3/2<o<o+ p+2,
K2 L) <en (1 —u+n72) 0P o (1 p2) 42202,
ifozoa+f+2,
K2 (WP 1 )| <en™ (1 — u+n72) )

We emphasize that the above estimates are not strong enough to yield our estimate
for kernel (5.2) on the sphere. The singular integrals involved in (5.2) require a far
more delicate analysis. Upon using Lemma 5.1, the essential part is dealt with using
the following estimate of the Jacobi polynomials [12, (7.32.5) and (4.1.3)].

Lemma 5.3. For an arbitrary real number o and t€(0, 1],
|PU/5 ( )|<cn_1/2(l — 4 n—Z)f(o%+1/2)/2’
and the estimate on [—1,0] follows from the fact that PY"P (1) = (=1)"PP™ (< 1).
In particular, in the proof we will use the estimate in a unified form
|Pl(,la,[3)(t)|<cn71/2[(l — 4 n*Z)*(er/z)/z + (1 +i+ n72)*(ﬁ+1/2)/2]. (53)

Moreover, the product of the two terms on the right-hand side of (5.3) is also an
upper bound of Pff’ﬁ)(t) on [—1, 1], which shows, in particular, that if §+ 1/2<0,
then cn~1/2(1 — u+ n=2)"*1/2/2 is an upper bound of Py (1) on [~1,1].

Let o == k|, + (d —3)/2 and let J = [0 + f + 2] = [2||, + d — 1], where [x]
denotes the integer part of x. Combining formula (5.2) and Lemma 5.1, we have

K2 (h2;x Zbrxﬁén (X, y) + Qu(x,Y), (5.4)
where

d
Qi(x,y) = e /[ ’ Pt B a(xy,0) T (1 —2ytdt - (5.5)
—L1J i=1
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and
d
Q.(x,y) = ¢ / u(x,y,t) H )(1 = 2)" ! dt, (5.6)
[71v1] i=1
here and in the following we write
u(X,y,t) = x1y101 + -+ + Xayata-

Our main task is to estimate Qy, since €; for j>1 can be estimated similarly and Q.
is relatively easy to handle. We state the estimate for Q) as the following lemma.

Lemma 5.4. For x,yeS?', 6>(d —2)/2,

d e - P
[T (x| +n & = +072) ™

Qu(x,y)|<c -
Q0 (x,y)| n\'c|1+1/2(\i—y|+n—‘)‘>+d/2

The proof of Lemma 5.4 is long. We begin with further reductions to reduce the
task to its essential part. The idea is to use integration by part as much as we can to
separate the part of n to the negative power. Let

kj=pj+4, pieNy, 24€l0,1), 1<j<d.

Assume first that 4;€(0,1), 1 <j<d. Using the well-known relation

%p;ﬁ/?(r) ;(n+a+ﬁ+2) (e 15+1) (5.8)

[12, (4.21.7)], we integrate Qy by parts p; times for ¢; for each i to conclude that
ee(=D™ T ()™

TP (42|, +6+d—i—1)/2

« / PUAFSHA=D2HE=3/2) 0 o )
[,

QO(Xv y)

n+lpl,

X H gjp [(1+2)(1 =) ] at. (5.9)

In order to estimate the integrals, we break each integral over [—1,1] into two
integrals over [—1,1 —¢,,] and [l — ¢,,, 1], respectively, where 0<¢,;<1/2 are to be

determined. Then the set [—1,1]¢ is the union of the sets
E,=0—¢1,1] % X (I =gpm ] x[-1,1 —&pme1] X -+ X [=1,1 —&,4]

and the permutations of E,,; that is,
d

[—1,1]° U U 6Ey, oE, ={x: (X5, ..-,Xs,)€EEn},

ey m=0



Z. Li, Y. Xu [l Journal of Approximation Theory 122 (2003) 267333 305

where %, denotes the symmetric group of d objects. Consequently, we have

(=DP T, () ” ]
T2l v o d—i-1))2] A ZQO””LZ Z Qom|, (5.10)

where, we will write Q,, instead of Qg ,,(x,y) from now on,

n+ply

Qo — / PUHSHA-D/2IHE3/2) 0 o )
E,

m

xU f,p (14 1)1 — )5 dt

and ¢Q,, denotes the integral over ¢E,,. Since the desired results in Theorems 3.1
and 3.2 are independent of the choice of the order of x;, we only need to deal with
Qo for 0<m<d.

We make a further reduction by making use of (5.8) again and integrating by parts
of Q. Let us introduce the notations

wi(X,y,6) =x1y101 + -+ X5t 4 XY (1 — & 1)
+ A xgva(l — €44)

for j=0,1,...,d. We note that uy(x,y,t) is independent of t and uy(x,y,t) =
u(x,y,t). We consider Qg first. If we use (5.8) and integrate by parts with respect to
tq in Qy, we have

2(xqya)”!

n+pl, +2\A, +d+5-2

1—é&n1 1—¢p4-1 OPd S
X / / {at/’d [(1 + td)(l - té) ! l“td:l_gn.d
—1 -1

(121, +0+(d=3)/2,|Al, +(d—5)/2)
XP”‘HIP‘I'H (

Qoo =

Ug—1 (Xa Y, t))

l—&nq ]
(141, +6+(d=3)/2,|4],+(d—5)/2)
[T A iy )

ap(rH
>< —_—
a+1

8t5

d—1 i
T 0+ 00 =AYt

[(1+ 2a)(1 = 1)) dtd}
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Continuing integration by parts once for each of the variables ;, 1<i<d — 1, we
conclude that

del l(xlyl) :
M, (n+1pl, +202, +d+0—i—1)

d d—1
X { ; Aoj+ > Zl aAo,,}, (5.11)
J= g =

Qoo =

where A, ; is given by

Ao =(-1) H (1= 1)

i ]+1

ti=1—¢n;

I—én1 175/1,/’ .
Al +0—(d+1)/2,]A|,—(d+3)/2
[ L PR DRI 4y )

o | R s

and oA, ; denotes a permutation of the order of variables in Ag_;; that is, 6Ay ; is the
same as Ao, ; after a permutation of variables. We will establish an estimate of Ay ;
that is independent of the order of variables, from which the estimate of cA_;, hence
that of Q, follows.

Similarly, for Q,,, we can use (5.8) and integrate by parts once for each of the
variables #;, m + 1<j<d, it then follows that

24 H?:m+l(xiyi)71
M1 (4 [ply + 2040, +d+0—i— 1)

1
./178 {ZAm1+Z Z aAm]}

o j=m+l

QO,m =

-

I—én1

H

(14 2)(1 = )5 " dr ...dty, (5.12)

where oA, ; has the same meaning as before, and A,, ; are given by

H aa:,, (1+:)(1 =)

i=m+1 ti=1—¢en;

A +0—(d+1)/24m,|A|,—(d+3)/2+m
P o =924 ()
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and forj=m+1,...,d,

-1y )1 =)
i j-H ti=l—¢n;
T=&nmi1 I—Su.j .
A +0—(d+1)/24m,|Al, —(d+3)/2+m
X /] /l Pi('t|+‘\]p\l+d(fm )/ 4] —( )/2+ )(uj(x,y,t))
J gpitl o
X W[(l +6)(1 =)V dtyyr ... diy.
i=m+1 i

We note that for m = d, there is only one term Ay, in the formula of Qy 4, and we
take the convention that H;’:a A; =1 whenever a>b in the formula.

In order to estimate Qy ,,, it is then sufficient to give a sharp estimate of A, ; that is
independent of the order of its variables. Considering 7€[0,1] and re[—1,0]
separately, if necessary, we see that
o
o

Using inequality (5.13) and estimate (5.3) of the Jacobi polynomial in A, ; and
recalling that x; = p; + 4;, we conclude that

(1401 =) | <e(Q+ 071 =)< (5.13)

(A, j| <en™'/? H & (Unj+ Vinp), (5.14)
i=j+1

where V,, ; does not appear in the case of m =0 and ||, <(d +2)/2,
Upm = (1 = (X, y, t) 4+ n~2) " irrorm=d/2/z,

I/m,m = (1 + um(x, y, t) + n*2)7<|/1‘1+m*(d+2)/2)/2

and forj=m+1,...,d,
Ai—1 2i=2
U /1 Enmt1 /1 en, j i m+1[(1 +l,) (1 - li) ]
m,j —

U (1= gy(x,y, t) + n-2)(AFsem=dr)]2

)

X dtyi dl‘,,

/ e /‘ o Tl [0 ) (1 = )]
Vm j =

1 1+ u(x,y,t) +n?) (12, +m—(d+2)/2)/2

X dtm+1 dtj

Remark 5.1. In the case of |A|, —(d+2)/24+m<0, the term (1 —u;j(x,y,t)+

p2) " WHtm=@E2/2/2 4 7 does not appear. Indeed, this comes from the remark

that follows right after Lemma 5.3, since (5.14) comes from the estimate of the
Jacobi polynomial in Lemma 5.3, and the second parameter of the corresponding
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Jacobi polynomial is |4, — (d +3)/24+m< —1/2 if |A], —(d +2)/2 +m<0. In
particular, if m = 0 and ||, <(d + 2)/2, then V,, ; does not appear in (5.14).

After this series of reduction, we are ready to derive the desired estimate for €.
We need to consider two separate cases. First we deal with

Case 1: ||, +6 —d/2>0.

In this case, we choose ¢, ; as

n(x—yl+n)

= 2y 4 R3] ) 1)
Evidently, we have 0<¢, ;<1/2d. By the definition of u;(x,y,t) we have
1+u(x,y,t) +n?
>1— lui(x,y, 0] + 72
>1-— zi: il +n 2 = R —§[ 2402~ (R —§] +n!) (5.16)
i=1

Hence, it follows from the definition of U, ; and the fact that ||, +J — d/2>0,
1 J

Unl<e e gy 1 o=
where the function g,(z), 0<A<1, is defined by
, " ) "
g.(1) = / (145711 =) 2 ds~ (1 + )1 — )" (5.17)
-1

Ai—1
ni

for te[—1,1]. It follows from the definition of ¢,; that g, (1 —e¢,;)~¢
Consequently, we conclude that

i 1
< ‘/y,fl
| U, jl<c i:]_;L Eni (% — 3] + nil)\),|l+5+m7d/2' (5.18)
Similarly, we have the estimate for V, ;
J - 1
1< e
Vi, jl e i:nlll e |1 (% — 3| 4 n- DyArm-@2z| (5.19)

while we have two terms since if |4|; +m — (d 4+ 2)/2<0, then the term (|X — §| +

n*1)7<w‘+m7(d+2)/2> does not appear in the above estimate of V), ; by Remark 5.1.

Both of these estimates also hold in the case of j = m. However, we have ||, +

m— (d +2)/2<|A|, + 0 +m — d/2, which is equivalent to 6> — 1; hence, using the
fact that |4|; + 0 +m — d/2>0, we conclude that

A 1/2 S 1

m il <en™ e

| A,]‘ [:1’41_] n,i (|)_(7y|+n71)

[4],+0+m—d /2
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for m<j<d. Therefore, it follows from (5.12), (5.13) and (5.14) that for 0<m<d,

d Ai—1 d -1
[ P € [Tt [xivil
1)\2|]+5+m—d/2 nd-m

\Qoﬁm|<cn’1/2 —
(K3l +n

1 1 m ,
X/ / T [+ 0 (1=t " .. du
l—gp, 1—&pm i=1

1 Ai—1
n—d—1/2 I é?nzl_[z et |Xivil €

(|X _ y| + n_l)\/\|+é+n1—d/2 ’

where we have used the fact that fllfe,,,/ (1414 ) (1 —¢ )// ! dt; <cs ;- Consequently,
using the formula of ¢, ; we end up with
d e < —oN—F
[T (pl+n X —§[+n2)""
\)V||+1/2(|— —§ + n71)5+d/2

|Q0,m| <c

o -2
o ] bl K= gl

(5.20)
Jj=m+1 |x]yj‘

Remark 5.2. In fact, this estimate (5.20) of Qp,, works whenever m>0 without
assuming the condition |A|; + — d/2>0. Indeed, the only place that we need the
assumption ||, + 6 —d/2>0is at the estimate of A, ;, where we used the fact that
|4, + 0 —d/2 + m=0; however, since 6> (d — 2)/2, this inequality holds without
any condition when m > 0.

Substituting the above estimate of € ,, into (5.10), we obtain that for |A], + 0 —
d/2=0,

d —p; e < oy
T oyl ™ (ol + & = §] +072) 7"
nlkl+H2(| — §] 4 n71)5+d/2

Q()<C

H |x/J’j| +n |)_( — ¥l +n?

5.21
x| ( )

Estimate (5.7) in Lemma 5.4 in the case of |1|; + J — d/2>0 follows from the above
estimate if

oyl =n R =§+n?, 1<j<d. (5.22)

It turns out that x,y satisfying (5.22) is in fact the most delicate case that we have
to deal with. To consider the other cases, we need one more notation. Let D be a
subset of {1,2, ...,d} and let D° be its complement; that is, D° = {1,2, ...,d}\D. We
denote by ||, the index ||, = ;. 4 and define || 5 similarly. In the following we
choose D to be the set

D= {j: |xyl=n IR — 3| +n %},
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and we assume that (5.22) does not hold; that is, D is a proper subset of {1,2, ..., d}
or D is not empty. We then follow the process that leads to the estimate of Q) in
(5.21) for jeD.

Using (5.8) and integrating Q in (5.5) by parts p; times for each #;, je D, it follows
that

(_I)MD HieD(xiyi)_pl
H'P‘D(n +2k|, +0+d—i—1))2
y /[ | 1] PUMlox HAp =D 2 ke +HAp =3/ oy g

n+plp

XH&P (1)1 =2 T (1 +6)(1 - 25 at.

ieD ie D¢

For each je D, we break each integral over ¢;€ [—1, 1] into two integrals over [—1, 1 —
&y, ;] and [1 — e, ;, 1], respectively, where ¢, ; is as before. Let |D| denote the number
of elements in D and let D = {ii, ..., ip/}. We define EP by

E}’ID’I :(1 - 8’7¢i17 1] X oo X (1 _8n7im7 1] X [_1’1 - 8n~i/n+l]
X oo X =11 = ey |
and define o—Enﬁ) as a permutation of the order of intervals in E,,. Then we can write

(=P TT,p (i)™

Q) =

TIP2(n 420, + 6 +d —i—1)/2

|D| |D|-1
x / c Z Q m+ Z Z O-Q()Dm H 1+ [i)(l - Z?)Kﬁl dti’
[*lal]‘D‘ m=0 4 m= ie D¢
where Q(l))m is like in (5.10) but for indices in D,
K|pe +|A|p+0+(d—1)/2,|Kk| pe +| 4 d-3)/2

ng =c, /ED PQJ@\I‘ [p+o+(d=1)/2,|x|pe+|Zlp+(d=3)/ )(u(x,y,t))

XHatP (14 2)(1 =) " ar

ieD

and anm denotes the integral over ¢EP. We can now follow the procedure that
leads to (5.21) to estimate QF

once for each variable #;, j = iy 1, ..., I|p|, and write the Qb

that is, we will use (5.8) and integrate Q. by parts

Om’ Om

om as asum of A ; like

(5.12), where the Jacobi polynomial in Aﬁ’j is

(e +12-+0-+d—1)/ 2 DL -+l +(d=3) 2+ m [ D])
1+ b+ Dl (u(x, 1))

whose first parameter satisfies
[&lpe +14lp + 6+ (d =1)/2+m—|D|
>l + 6+ (d—1)/2-|D|> —1)2
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for all m=01if |D¢|#0, |A]; + 0 —d/2=0 or 6 = (d — 2)/2. Consequently, we can use
(5.13) and Lemma 5.3 to obtain an analogy of (5.14); then following the procedure
that leads to (5.21) almost verbatim, we obtain the following estimate:

. 1 _ CAN—J
[Tien eyl ™ (| +n7 & = § +n72)""

nklo+172(|% — §| + n—l)mz)c+5+d/2
<1 oyl +n R —§| 402
jeD X7yl
[Lep(lxyjl +n7 % =3 +n72)
nlklo+1/2(1% — 3| + nfl)\'»‘\pc+(5+d/2 ’

|Qo‘<c

71(/

<c

where the last step follows from the definition of D. Since for je D,
il +n 7 R =§ 402~ R =40

it follows from the last estimate that estimate (5.7) holds when |D¢|#0, or when
(5.22) fails to hold. Consequently, we have established Lemma 5.4 under the
condition that |4|, +J —d/2>0.

Remark 5.3. We emphasize that, under the condition 6> (d — 2)/2, the proof of
(5.7) when |D|#0 holds without the condition ||, + 0 —d/2>0. It is from this
perspective that we consider the case x,y satisfying (5.22) the most delicate case.

Remark 5.4. We would like to point out that the above proof of Case 1 works
without the assumption 6> (d — 2)/2; that is, estimate (5.7) works under the
condition [4]; + ¢ — d/2>0 with §>0.

Case 2: |J|, + 0 — d/2<0. This case turns out to be rather delicate. The proof is
far more involved than the previous case. First we notice that it may be assumed that
|4], <1, since ||, =1 and d=(d — 2)/2 implies that |4, + 0 — d/2>0. We then have
(d—2)/2<5<d/2 —|]],. Second, by Remark 5.3, we can assume that (5.22) holds.

We reduce the essential part of the estimate to that of € ,, as before. We should
emphasize that the partition of Qq into Q,, depends on the choice of ¢, ;. As we
pointed out in Remark 5.2 that the estimate of €, in (5.20) holds for all m >0
independent of the sign of |1|; + 6 — d/2. Unfortunately, it turns out that the same
choice of ¢, ; does not work with Q o. This forces us to choose another ¢, ;, which we
denote by ¢

*
n,j?

oo mx=yl+nh
" 2d (gl AT X =y 4+ n2)

We again have 0<¢, ;<1/2d. Let us denote the corresponding partition of [-1, 1)?
as a union of £, and Qy is partitioned as a sum over Q; , like (5.10). We then need to
derive estimates not only for g, but also for Q;,. Our goal is to establish, for
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12, <1 and (d —2)/2<5<d/2 — | A,

I, (e + V& — 9]+ )"

Q. |<c -

(5.23)

Substituting (5.23) into (5.10) yields (5.7). Hence, the proof of (5.23) will ensure the
proof of (5.7) in Case 2.

n,j?
Hence, the estimate of Q(*)’O is over a region smaller than that of Q). Consequently,

we cannot combine the estimate of Q(*)ﬁo in (5.23) and that of Qy,, to finish the proof
of Lemma 5.4. We need to establish the estimate (5.23) of Q; ,, for m>0 in a different
way. Let us also mention that the choice ¢, ; does not work for the Case 1.

Remark 5.5. Since X — §|<|x —y|, we have ¢, ;<e ;, which implies that Ejc E.

Case 2.1: The estimate of Q for |A|; <1 and (d — 2)/2<6<d/2 — |A|,. We notice
that formulae (5.10)—(5.14) hold with &n,; replaced by ¢, ;. From (5.12), we need to
give an estimate for Ag ;. Since ||, <(d +2)/2, this is the case that V4 ; does not
appear in (5.14) (Remark 5.1). Hence, from (5.14) and the formulae for U ;, it
follows that

n,i

d
Aoo<en™ P TT ent (1 = uo(x, y, t) +n2) " rtomdi22 — g,
i=1

i=

and forj=1,2,...,d,

d 1=z, I—¢, ;
Mojar® [ [ |

i=jt+1 1 !
(U 6) (1 =)
(1 —wi(x,y,t) + n72)<Hh+r>—d/2)/

sdty...dtj = Jj.

In order to estimate these terms, we prove that J; <cJ;_i first, so that we only need to
estimate Jy. We use the fact that

1 —ui(x,y, t) + nl=1- ui—1(x,y,t) + n+ xy;i(1 — e;j —t). (5.24)

Thus, if x;3;<0, then 1 —u;(x,y,t) +n2<1 —u;_1(x,y,t) + 72, from which it
follows that

/ d : l—¢,, 1—¢; i1
. —1/2 * Ai— ? T
Ji<cen H € /l /

i=j+1 1
U A
(1 — w1 (x,y, t) + n=2)hro=a/2)/
< eJj-ts

X

sdty...dtg, (1 — ¢, ;)
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where in the last step we have used the fact that g, (1 — ¢, ;) ~a;)}f_l which follows
from (5.17). In the following, we consider the case that x;y; >0.

It turns out that we need to consider the case of j =1 and the case of j>2
separately. For j = 1, we integrate J; by parts and using (5.17) to conclude that

*

d i —
Jy=cn /2 H o g (1= 1)
=3 (1= uy(x,y,t) +n2)!

7, +0—dj2)]2
1 ,
—§x1y1(|ﬂ|1 +d6—-4dJ/2)

X /13;«“ g, () dty
L (U —wmxyb) 4 n )R

d
<cl|Jo+n""x 0 H 8;?"71
=2

l*éI;yl (1 _ l1)1171 dt]
X 1 (1 _ul(x,y,t)+n,2)(\)~|1+6—d/2+2)/2 .

Using (5.24), it follows that

d
Ji< eJo + enVPxy H sf,;"’*l
=2

[ (1= g — )" di

X : - .
-1 [T —uo(x,y,t) +n2 +xip1(l — &) — [1)}(\,41+57d/2+2)/2
In the last integral we make the change of variable

s -, —n)
1 —up(x,y,t) +n2

to conclude that it is equal to

(xiy1) "
(1= wlxy. )7
x1y1(2—¢, )

Ty 402 s s
X/O (1 + o) PAhH0=d/252))2 53

hence, upon using the fact that (JA|, + 0 — d/2 + 2)/2 — 2; >0, which follows from
0=(d —2)/2 and 4, <1, and the elementary equation

t safl I
/ 5 ds~ = b>a>0,
o (1+s) (1+1)

\+o-d/242)/2— 7




314 Z. Li, Y. Xu [l Journal of Approximation Theory 122 (2003) 267333

it then follows that

J1<cJo+cn x1y1 H sm

y (1 —up(x,y,t) +n 2 +x1p1(2 - 8:2,1))_21
(1= to(x,y,€) 1 n-2) P o-a/22)/271

From the definition of & ., it follows that |Zf:lx,~y,‘8;‘hi\<n‘l(|x—y| +n71/2,

n ]7
hence, we have that

1 d
11— uO(X7y7 t) + n_2 :E |X - y|2 + Z xiyisrl.i + n_z
i=1

~(x=yl+n )Y =n (x—yl+n ), (5.25)
so that by x1y1 <(I —up(x,y,t) +n 2+ x1y1(2 —¢;,)) and 0<¢;,;<1/2d,

X (1= up(x,y,8) + 172 + x1p1(2 — &5,)) "
(1 — up(x,y,t) + n=2)" "

_ o\ 14
<c e[+ x —y[+n7° I:ce”‘*l'
T+ s

consequently, we have that J, <Jj.

Next we consider the case j>2. Since |4, <1 and 0<4;<1, there is at most one
ke{l,2,...,d} such that 2y €[1/2,1), and all other 4;€ (0, 1/2). Thus, there exists at
least one 4;€(0,1/2) for 1<i<j since j=>2. Let us assume that i =, that is,
2;€(0,1/2). We then integrate by parts with respect to ¢;. From (5.17) and (5.24) we
conclude that

d 1—¢ 1—¢ .
-1/2 % 4i—1 ! !
Ji<cn H &, /1 .

i=j+1
0,(1-5,)

X
[(1 _ uj71(X,y, ) ) (|4, +0-d/2)/2

/16;‘1 95 (tj)dt]
X
- (1 —w;(x,y,t) +n~ 2)(\4\ 1+0—d/2)/2+1

1
§ijj(\/1|1 +06—d/2)
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j—1

x DN = ) R Ly
i=1

I—¢, € i
J1+l/l /xy/HS*A,*l/ /

i= /+]

<c

X

(1-—19—1(x,y,t)4-n4—)lih+bfd/2+w/
173;]' (1 _ tj)/l,’*ldlj
(1= wi(x,y.t) +n2)"?

Y1 = )" dn, ...dt_,_I],

X

-1
Jj—1

X
1

i=

where we have used the fact that 1 —

|4, + 0 —d/2+ 1>0. Using (5.24), 1 —
lows that

ui(x,y,t)=1—u_i(x,y,t) since x;y,>0, and

wi(X,y,t) +n2=xy;(1 — ¢ ; — 1), it fol-

/“8:_,. (1— )" 'y
-1 (1 —u(x,y,t) + n-2)!/?

— j—1
S(xjyj)l/Z/] o (1=1)""dy
1 (g 1)

| [ 4=3/2
<c(xy)) (1 —g)”""dy;

1

1—¢* .
-1 n.Jj _
+ 6,7 /13 /2(1—8;‘,‘—?/) 1/20'[_/]
- e‘* .

1/2 * Aj— 1/2
<C(ij]) €n,j ’

where in the last step we have used the fact that 0 <A;<1/2. Therefore, using the fact
that

j-1
L= w1 (x,y,t) 407 = (1 =D Xiiti = X
i=1

i:j+1

- Z ijj(l _8;,1‘) —|—I/l2> + Xjyj ;: //x/y/ n,j
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and the definition of J;_i, it follows that

d ‘ . ,1/28* 1!71/2
i< el +en Py T eni™ (jyj)—*nlj/z
i=j+1 (xjngnvj)
I—¢,, I=g, 1
X -
,/,1 /,1 (1 — U1 (X, y, t) + n*Z)(V*‘DL‘)*d/Z)/Z

Jj—1 )
X H (1 + fi)Ai71(1 - l?))'i72d2‘1 ...d[j,1
i=1

<cljg

for j>2. Consequently, we conclude that J; <c¢J, for all j> 1. Hence, from (5.11), the
definition of Jy and (5.25), it follows that

Hﬁizl il (xi] + 0 x =y F )

n|A\1+1/2(‘X —y| + n71)5+d/2

Qoo <c (5.26)

Recall that we assume that (5.22) holds. Now, if for all je {1, ...,d},
n R = § < gyl < -y

which implies, in particular, that |x;y;|<cn~! for 1<j<d, then for n sufficiently
large, we have

X—y[Z[R—§[=2-2) [i[>2—c/n=cx -y’
i

Thus, in this case, we may replace |x — y| by |X — §| in (5.26) to obtain that

1—-7;

d —1 o _ B
[Ty eyl (Jxipil +n7 'R — 9] +n72)
nu\|+1/2(|,—(7y|+n,1)5+d/2
d - v = -
< CHi:1(|xiyi| +n X —§|+n?)
n|ﬂ1+1/2(|)—(_y|_’_n,1)5+d/2

[Qol<c

—2i

On the other hand, if there exist ke {1,2, ...,d} such that
eyl =n”tx =y + 072,

let us assume that one such index is k = d, then it follows from (5.26) that

TIE (] + 7Y x — y| +n2)

n|1\1+1/2(|x —yl+ n_1)6+d/2

« ﬁ Ixil +n ' x —y| + ”72.

i |xiyil

1Qgol< ¢
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Using (5.22) we have

dl:[l |xiyi| +n7[x —y[+n2
|xiyi|

<241 1:[ xiyil + 07 [x —y|+ 172
‘Xtyz|+n 1|)(_)7|""—’/l_2

i B NN
<21 X—Y|+”1:241<|"_Y|+”1> : (5.27)

X—§[+n!

where the second inequality follows from the elementary inequality (#+ a)/(f+
b)<a/b which holds for >0 and a>b>0. Consequently, we conclude that

d - —2\—4i
T Gl !yl o) !

Q; .
B e e L P R

Since 0= (d —2)/2, 2;>0 and |x —y|>|X — §|, it follows that
< T el 7! [% = 3] +m2)

|Q(*)0 ) O+d/2 ’
. nlhH2(|% — §| +n1) +d/

which holds for all x and y satisfy (5.22). This is the estimate (5.23) for Qg
Case 2.2: The estimate of Q,,, 1<m<d, for ||, <1 and (d —2)/2<5<d/2 —
|2}
Since 0<|A|; <1 and 0> (d — 2)/2, we have
A, +0+m—d/2=20, m=1,2,...,d.

0,m>

Consequently, we see that estimate (5.18) of U, ; holds with ¢, ; replaced by ¢ ;; that

is, we have

n}’

mj\C H 8*/, ‘X7y|+l’l )7(\A||+5+m7d/2).
i=m+1

Similarly, estimate (5.19) of V,, ; holds with ¢,; replaced by ¢} ;. Therefore, following
the steps that lead to (5.20) and using the definition of ¢ we conclude that

n,j?
Hm * A Hd | |71 *i 1
m—d—1/2 LLj=1 Enj Lljmmi1 1%iY5
N d/2

|S237m|< cn _ _ B
(K- ] +n
ch (il +n 7t x =y +n7%)"
A2 (|x — y| + n- )d m—|2],
d -1 _ _
y Lt g™ (g + ' x =y +1n72)
(|)_{ o y| + n_1)|/1\1+5+m—d/2

4

-/

(5.28)
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This estimate by itself is not strong enough for proving (5.23). We shall use it only in
the case that there is a k, m + 1<k <d, and x;y; satisfies

Xk <0 and |xkyk| = (|X — y|2 + n_z)/4d, (5.29)

which does not happen for m = d. Let us assume that 1 <m<d — 1 and k = d. Then,
under condition (5.29) which implies that |xsy4|=>c(n~'|x — y| + n2), we have

‘ 1
€2
1 _ o=
[T (gl +n7 Y x =yl +n7%)7"
(|X—y|+n71)d7m7‘ill(|)_(—y|+n71)li"+6+"17£l/2
d—1 _1 )
(il +n " Ix —y|+n77)
< | .

Pt Xl

(LIRS

Using (5.22) it follows as in (5.27) that

5 d—m—1
ﬁ |xiyil +n7x —y| +”2<2d—m—1(|X—Y|+nl> "

S = =1 . 1 )
bl |xXiyil X —§|+n!

from which we conclude that

PRSI 0 A . e L <|>z 31+ ) e

0,m nl’”l+l/2(|)_(—y| +n,1)r>+d/2 |X _y| + -1
The use of (5.29) helps us to reduce the exponent of the last term by 1 so that it hasa
positive power 1 — |4|;>0. Hence, using the fact that |x —y|>|X —§|, we have
proved (5.23) under the condition (5.29).

On the other hand, if (5.29) does not hold, then for all m + 1<;<d we have
x;y;=0 or x;;<0 but |x;p;|<(|x —y|* +n72)/4d. In this case, recalling formulae
(5.12) and (5.14), for Qg , we have 7;e (1 —¢;,;, 1), 1<i<m; hence, by the definition
of u;(x,y,t) and the definition of ¢, ;, we have that for j>m,

1 —ui(x,y,t) +n2

J d
= x—y]*/2+ Z xiyi(l —t;) + Z Xiyie,; + n?
i=1 i=jt+1

2 *
>Ix =y /2= |xile),
py
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J d
-2 Z |xivi| — Z |xiiler +n?
i=m+1 i=j+1
d—j+m
2 J — _
>x—y[/2————n(x—y|+n")

2d

i —m
LR (x—yPAn ) +n?

2d
~(x =yl +n7")%
Using this inequality in the definition of U, ;, since |4, +  +m — d/2>0, and using
(5.17) we conclude as in (5.18) that

J
* 41 —1\—(|A],+0+m—d /2
Unj<e [ e (x—yl+na") 0 )
i=m+1

For V), j, we still have estimate (5.19) with ¢, ; replaced by ¢, ;, and from (5.12)—(5.14)
we conclude as in (5.20) that

m X d -
* m—d—1/2 | I * Ay I | O e B
|QO,m| S on 8n,j |xlyl‘ gn,j
J=1 J=m+l1

% [(‘X _ y| + nfl)—(\)v|l+(5+m—d/2)

+(|R = §| + )~ Wrm=(@+2)/2)

d —1 — _oN1—4;
[T sl (o +nHx =y +m72) 7

nli+172(1x — y| + n,l)am/z

" m |xjyj|
i) ‘ijj| +nlx—y|+n?2

d — N
. [Tz (gl + 7t x —y[ +1n72) 77

T n\1|1+1/2(‘x _ y| + n—l)d*m*Wl (li . y| + n,1)|x\l+;nf(d+2)/2

ﬁ |xii| +n7tx —y| +n2
it il

The first term is bounded by

d -1 _ _oN1—=2;
[Tz ol (] +ntx =y +072) 77

n‘)-‘1+1/2(|x_y| +n—1)5+d/2 )

which is the same as the right-hand side of (5.26), and has been proved to be
bounded by the right-hand side of (5.23). Similarly to (5.27), from (5.22) we have

d _ _ 1\ d—m
I Bt sl e sl
|xjyil x=§l+nt)

Jj=m+1
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so that the second term is bounded by
d - Ny _
ch:I(Ix/y/I +nlx—y[+n7?) (x —y|+n7")
A2 (% — §) + nfl)\llﬁd/Z—l
d _ o\
<0Hj:1(\x_/y/’| +nlx—yl+n?)
A28 — §| + n—1)5+d/2 ’

Zh

since [A]; +d/2—1<6+d/2. Thus, we have proved that |, [, 0<m<d, has
estimate of (5.23) for the case |4|; <1 and (d —2)/2<d<d/2 — |2|,. Substituting
(5.23) into (5.10) and using (5.22), we complete the proof of (5.7) in Case 2.
Combining the estimates in Cases 1 and 2, the proof of Lemma 5.4 is completed
when 0< ;<1 for 1<i<d.

Recall that x; = p; + ;. If one of the x; = 0, then formula (5.2) holds under limit
(1.6), so that the integral against ¢; will not appear. In this case, it is not hard to see
that the estimate in Lemma 5.4 also holds under the above limit. In case one of the x;
is an integer, that is, 4; = 0, then when we integrate by parts p; times, as in (5.9), one
additional term will appear. For example, let k; = py; then integrating by parts p;
times in Qg, we have

O — ce(=D" (ay) ™
ST (2], + o+ d —j—1))2

B
x /[ e P )

8K1—1
K1—1
on

Hh=1

el n)(1 = )]

nh=1

L o .
= [P ey 1+ 1)1 = A |
- 1

d
xH + 1) (1 — ) Lay
=2
ce(—=1)" (eryr) ™ :
— — e
T, (n+2/k|,+0+d—i—1))2 (e =1)

x/[ . Pg,ofﬁ;fll)(lel + Xoyaty + -+ + XaVala)
L
d
X H (1 + li)(l — [?)K,‘fldli
i=2
o o .
_/[ L P;L;f‘)(u(x,y,t)) or [(141)(1— l%)<l 1]61711

d
< [T (1 + )1 =) 1dz,}

i=2
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where we write o) = ||, — k1 +d+ (d —1)/2 and S, = |x|; — x1 + (d — 3)/2. If all
other «; are not integers, then continuing integration by parts with respect to other
variables, we see that the second term in the right-hand side is the same as the right-
hand side of (5.9), and the first term is similar but with one integral less. If more than
one k; are integers, then we will have more terms. The extremal case is a term
containing no integrals, which appears when all x; are integers; the term takes the
form

L'k(_l)lkll H?:l (x,-y,—)f'“ H;JZI (Kl' — 1)!2"/‘
Min 420, +0+d—i—1))2

POV (x4 xgpa),

which is bounded, upon using Lemma 5.3 and the fact that 1 + (x;y; + -+ + xgp4) +
n? =[xyl /2+ 02~ (Ixky| 0P = (k=3 + 17", by

7(376//2_’_(‘X+y|+n71)7(6/*2)/2}.

d
¢ .

e L ol sl =)
Hence, in case that (5.22) holds, we see that this estimate is bounded by the right-
hand side of (5.7). In case that (5.22) does not hold, then we use the set D and follow
the method in the second half of Case 1. All other terms are between the above term
and the right-hand side of (5.9), and can be handled similarly. This completes the
proof of Lemma 5.4. [

With the hard estimate of Q taking care of, we are now ready to prove the main
estimates in Theorems 3.1 and 3.2.

Proof of Theorem 3.1. We use formula (5.4) of K?(h%;x,y). The estimate of Q is
given in Lemma 5.4. Replacing § by J 4-j, we obtain the estimate of €; for j>0.
Hence, by Lemma 5.1 and (5.4) it follows that, with « = = |x|, + (d — 3)/2 and
J=[o+p+2],

J
>~ by, . 8,n)
Jj=0
d —1|g < —2\—K;j
BRI e R 50
naf(dfz)/z(b—( — |+ n,l)a+(d/2)

1 (x,y)l

which is the first term in the desired estimate in Theorem 3.1. Next, we estimate the
second term Q. of (5.4). By Lemmas 5.1 and 5.2, it follows from (5.6) that

1

|Q*‘< Cl’l_l/
L (1= u(x, y, t) 4+ n=2)Ki+d?
d

< [T (1401 =) at. (5.31)

i=1
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By the definition of u(x,y,t), we have

d
L—u(x,y,t) +n 2> 1 - Z eoiti| +n?

i=1
+Z |xlyt 1_|l|

\S} \

and it follows that

d Ki—1
(1 —=1)"
|Q*\<cn*l/ 5 Hd’:l( ) WP dt.
o1 (IR = ¥17/2+ 2y Ixavil (1 = #;) +n72)™"

Changing variables ¢, —s; by

1%y .
§i=— I (g 1<j<d

in th above integrals, we obtain

Ki
|x — y\ +n? 1
|Q ‘< c H( |Xzy: ( s =2 ,2)\K\]+d/2

n(|Xx—y| +n

[x11] |xayal

d
x—31%/2+n~2 / K37 /24n2 1 -1
X I I s ds.
/o 0 (1481 + -+ sq)hH42 23

Using the elementary inequality

%, f‘_lds ﬁ s¥ s,
148+ - +Sd |’~ Jr‘1/2 Kl+1/2
d i
T'i
< ;
¢ zl:l[<1 —|—l"l‘)

it then follows that

d _ P -
|Q.] chi:1(|xiyi| +]x—¥| +dn 2)
n(|x—y|+nt)

—Kj

The above estimate still holds even if one of the k; = 0. Indeed, in that case, formula
(5.2) holds under limit (1.6), so that the integral in (5.31) against ¢ will not appear.
Repeating the above process leads to the same estimate of Q, as above. Together
with (5.30), the desired estimate of K?(h%;x,y) follows from (5.4). This proves
Theorem 3.1. O

Proof of Theorem 3.2. Recall that k; = p; + 1;. We give the proof under the
assumption that 0</;<1 for 1<i<d. The cases that some or all 4; = 0 are proved
similarly, as in the consideration at the end of the proof of Lemma 5.4.
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If |y;|<|x;]/2 for some j, then |X — §|>||x;| — ||| >1x;]/2. Hence, it follows that
for 1<i<d

eayil + 0 R = §] 072 = ] ] /2.
Using this inequality in the estimate of K(/h2;x,y) in Theorem 3.1, we get

d _ —K;
[T (x| +n"x1/2)
m DR gl /2 4+ 071
d — —Ki
+I_L‘:l(|xi}’i|+” oyl /2)™"
n(lx;|/2+n 1)
d

< C(X)n(d*2)/275 H (il _’_n—l)frc,-7

i=1

K (s x,y)|< ¢

where in the second inequality we use the fact that 0<6 — (d — 2)/2< 1. This proves
the estimate in (i).
If forallj=1,2,...,d, |yj|>]|xj|/2 and x;y;>0, then |x —y| = |Xx — §| and

ol +n R = §l 4 e 24 n 7

Hence, from the estimate of K?(h%;x

K’

,¥) in Theorem 3.1, it follows that

d
KOsy < e [T (/2 4m72)7
j=1
X [ (x =y )T (= y | )
<C(X) —0+(d— 2/2(‘X y|_’_n—1)757d/27

since (d —2)/2<0<d/2, which is the desired estimate in (ii).
Finally, we consider case (iii) that for all j = 1,2, ...,d, |y;j|>1x;|/2, and x;yr <0
for some k. In this case, we have

gy =x7/2 and  |x — y[P > (x — )’ =7 (5.32)

To derive the desired estimate, we need to go back to the proof of Lemma 5.4. We
use decomposition (5.4) and again follow the argument from (5.10)—(5.14), so that
the essential part of the estimate is reduced to the U, ; and V,, ; terms. First we
consider the case |4, + 0 — d/2>0. In the present case, we choose ¢, ; as

. _
En = Ep,j ::%(|x—y|+n h
instead of (5.15). We note that this choice is independent of the index j. From the

definition of U, ;, the variables t,1, ..., t; that appear in U,, ; are each within the
range (—1,1 —¢,). For i>j + 1, let us write #; = 1 — ¢, in the definition of u;(x,y, t).
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Then, if x;yr <0 and k<m or k>=j+ 1, we have

1 —u(x,y,t) +n" —1—Zx,y,l,—|—n
= —xk+ 1= xiti+ (1 — ) +n
i#k

> — ek = [l =l /2.

Using this inequality in the definition of U, ; and using (5.17), we conclude that

m, j also holds
for U, m, for which we take the convention that Hm 4 nl = 1. If x;y,<0 and
m+ 1<k<j, then we split the integral over # in the definition of U, ; into two
integrals, one over [—1,0] and another over [0, 1 — ¢,]. The above lower bound of
1 — u;(x,y,t) +n~? still holds for the part that includes the integral of 7 over [0,1 —
&), and we use 1 — u;(X,y,t) + n2=¢(|k — §| +n1)?, see (5.16), on the part that
includes the integral over [—1,0]; this way, we derive using the definition of ¢, that

/ -7 ;
€
Upnj<c i Lt c(x) il
izl,,ll (] +n71)‘ |i+6+m—d/ i:]_nll n
Ca 1
=) - « 4
iln;[rl T AR = g 4 et
ﬁ -1 1
s <) l Tvsrm—an—a-m T
T (R — | 4 ey PAom—aa=(=

where 1 = max <;<q4;. For V}, ;, we note that estimate (5.19) is valid and recall the
remark right after estimate (5.19), we conclude that

1
1);.|1+m<d+2)/z] :

Ai—1
m]\C H &,

i=m+1

T

Using the inequality |A|, +m — (d +2)/2<|A|; +d+m —d/2 — (1 — A), which is
equivalent to 6> — A", we see that V,, ; is bounded by the bound of U, ;.
Consequently, from (5.11)—(5.14) and using (5.32) and the definition of ¢, we
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conclude that for 0<m<d,
c(x) A i u 2i—1
Qonl<—— i [T e 11 @
i=1 i=m+1
1
X - I
(|)—( _ y| + n_])\).|1+0+m7d/27(174 )

+1

< c(x) 1
S Al g ) 1))

1
+ d—m—||, | °
(X —§/+n") ‘
Since d-m—|i,=0+d/2)— (A, +6+m—d/2) and |i|;++m—
d/2=]A|l, +0 —d/2>0, it follows that
Q0| <e()n =12 (g = §] 407

where # = min{l — 2", ||, + 6 — d/2} >0, for |A|, + 6 —d/2>0.

Next we consider the case ||, +J — d/2<0. In this case, we follow Case 2 of the
proof of Lemma 5.4. We again have ||, <1, since ||, >1 and 6> (d — 2)/2 implies
that [4]; + 0 —d/2>0. For Q;,, we use (5.26) and (5.32) to conclude that

1Q0,0] <e(X)n TR Le(x)n =12 (18 — §| 4 n =042

do-+d/2—n)

)

with n = 1 — ||, >0, which follows since é +d/2 — n=>0. For Q; ,, we use (5.28) and
(5.32) to conclude that

1
|Q0,m| \C(X}n|;“‘1+1/2(|)_( _ y| + n_l)\l\|+5+m—d/2'

Since |A|, +0+m—d/2=0+d/2—(d—m—|2|,) and d —m —|A|; =1 —|1];>0
for m<d — 1, we conclude that

1
Q' 1<ce(x)
| 0,m| ( }nl)“‘l+1/2(|7_( _ y| + n,1)5+d/2*'1

withy =1—|A|;>0form = 1,2, ...,d — 1. Finally, we consider the case m = d. The
integral of €, is over Ej, we have that f;€[l —¢, ;, 1] for j=1,2,...,d, which
implies that

d
Z xiyi(1 — 1)
i=1

We have then

d
<

xiyile, <~ (jx —y| +n71)/2.
1

l

d
1—ux,y,t) +n2=x—y[*/2+ Z xiy(1—t;) +n?
=1

~(x =yl +n")
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Use Lemma 5.3, (5.13) and the above relation, it follows from the definition of Qg ,
(after (5.10)) that

d
—1/2 A —IN—=(|A], +0+d/2
Q5 1< en™ 2T e 1(x — y| +n7 ) (Hliord
j=1

+(x—§|+ nfl)*(\)~|1+(f1*2)/2)];

*

. j» we conclude that

consequently, using (5.32) and the definition of ¢

12,41 < el {14 (K = 5] 47! ADI)
< (xR — g )T
with n =1—|4],, since 0 +d/2 —n=|i|; + (d —2)/2=0. Substituting these esti-
mates into (5.10) and using (5.32), we conclude that

Q0| < e(x)n I =12(|g — §| 4 n~ 1)~ 4/2n

with some >0 for both |1|; + 0 —d/2>0 and ||, + d — d/2<0. Similarly, upon
replacing § by 6 + j, we get the estimate for €;, which is given by

Q| <e(x)n K2 (|5 — g 4 )02

with some #>0. Putting all these estimates together, we conclude from Lemma 5.1
and (5.4) that, with o = f = |x|, + (d — 3)/2,

m

Z bj(aa ﬁa 5; }1)
Jj=0

e R (S [ D R

with some #>0. Finally we estimate Q, in (5.6). We use (5.31). Let us assume that
k =d in (5.32). We then have

1 —u(x,y,t) +n2

d—1

=1 - Z xiyiti| = |Xayal = xaya(1 + t4) +n?
P

d—1
=R =9/24 > eyl (1= [a]) + xayal(1+ ta) + 272,
i=1

which implies, in particular, that for 7,€[0,1], 1 —u(X,y,t) +n 2> |xsp4|>x%/2 by
(5.32); and for 15,€(—1,0),

d
L—u(x,y,0) + 02 2R =317/24+ ) boyl(1 = [a]) +n72.

i=1
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Therefore, using these inequalities in (5.31) we obtain

Q \<@/ /0
n [_]71]d71 -1
(1 + 1) "dty

: +1
(% - ‘/2+Zz Vil (1 = [6]) A+ no2) e 1

XH — 2y lat
( )

d -1
X / u ) e (=) Tttt
0. (IR = 31°/2+ XL, [l (1 = 1) 4+ n72)
For each 1<i<d, changing variables ¢; —s; with

|Xiyi|
—— (1 — ¢
CECErEi

P =

and using (5.32) we have

< O g g2 2y

|x171] |xayal . _
TR e S vl | ran
X P +d/2ds+1
0 0 (L4514 - +59)""
[xayal
( ) ovi—dj2 [IK3P /242 Sy
(I —§7/2+n7?) ——— 5 dsa
0 (1 +Sd)l€d+l/2

"CL% ci—1

d-1
RSP S,
x H / ) +1/2dsl +1

Hence, using the elementary inequalities that for ¢=0 and r=o¢ >0,

r Sa—l r 54 1
7ds<6 and / 7d$<cr s
/0' (1 +S)u+l/2 0 (1 +S)a+l/2

we conclude that

1/2
( MNoie <o 2N\1—d)2 | Xayal

Q< —=|(x - 2+n _ +1

Q< (x—y[/ ) FEREy
( )

(% =31+ +1).
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Since (d — 2)/2<0<d/2, we have

n! = n*5+(d*2)/2(n*1)d/2*5<n75+(d—2)/2(|)—( ¥+ nf])d/zfa7
so that

Q] <e(x)n™ PR — g 407 O

Consequently, estimate in (iii) follows from (5.4). O

6. The estimate of the kernels for WKT u

In this section we prove the estimate of the Cesaro kernels for W[ in Theorems

3.3 and 3.4. The essential part of the proof is similar to that of 3.1 and Theorem 3.2.
We shall be brief.

Proof of Theorem 3.3. Throughout the proof we write y = K441 and write |x|, =

Zd+1l x;. We start with formula (3.7) for the kernel K2 (W u’ ;X,y) and break it into a
sum

K0

J
Ky (W!ix,y) = bi(o,—1/2,6,mQ(x,y) + Qu(x,y),
j=0

where o = |k, + (d —2)/2 and J = [0+ f + 2],

+
' . (o+0+j+1, 2 h’ 1
Qj(xay) = Ck /[1 ot P, ];[ dt
and
d+1
Q.(x,y) = c,{/[ L G222 1) [] (1 =) at, (6.1)

here and in the following, we use the notation

z=z(X,y,t) = /Xiti + -+ /Xayata + \/1 - |X|1\/1 — |¥litat1-

Using Lemmas 5.1 and 5.2, Q. is bounded by

3 d+1
Q*(va) = (Q(n_l)CK/ (l —Z—l—n ) ic, ldt.
[7111]d+1

i=1
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e ;
Using the quadratic transform P,(f" 2>(212 -1)= anqu ”(l), in which a, = O(1) since
Pz(ix'ﬁ)(l) = ("), it follows that

d+1

_ (a+5+'+l‘a+5+'+l i—1
Q;(x,y) = cray /[H]d+1 piot j U Yl g,

Following the proof of Theorem 3.1, we consider the estimate of Q. Let «; =
pj+ 4, p; being nonnegative integers and /;€[0,1). Recall the notation &=

(VXT1, oo y/Xa11) with xgp1 =1 — x|} and {= (1, ...,/Var1) with yg =1~

ly|;- The objective is to prove the following lemma.

Lemma 6.1. For x,yeT“, 6+ ||,>(d+1)/2,

HJH(\/X/J’/ +n 1|C —{ +n72) "
nlxl, +1/2(|é —{ +n—1)b+(d+1)/2 ’

Q| <c

For 4;€(0,1), j=1,...,d + 1, using (5.8) and integrating Qq by parts p; times for
each ¢;, we obtain

_ aan(D)M T ()
17 3n + 20+ 0+ 1) —j +1)

. d d d+1 .
(21404512, +6+45) o 21
x[}mﬂﬁwm G [ gp (=50 de

Note that £ is in Si, the first quarter of S¢. If, instead, we consider ¢ as a vector in its
own right, &£ = (¢, ...,&4,1), then we can write z as

z=z(& ) =600+ -+ Ealata + Ealavitas,

where { = ({1, ...,{441). If we let & range over the entire S¢, then in order to evaluate
Q, it suffices to consider the integral for (¢, ...,%s:1)€[0, 1]"“. Each of the other
2¢+1 _ 1 parts can be reduced to this part by making the substitutions of variables
i = —t; and {; = —¢; for some j’s. Let

d+1

Qo =n [T (&5) ™

J=1

. d
" P(Hh+0+‘§-,\ﬂ-ll+5+2
[0 1],1+1 2”+|P‘l

Instead of proving Lemma 6.1, we shall prove the following lemma.

;cfl
_] J dt
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Lemma 6.2. For &,{eS? 6+ |,=(d+1)/2,

Hd+1(|£/é’]|+n—l|f C|+I’l_2) Kj
|Qol e nleh +l/2(|5_€‘+ 71)0+(d+1)/

Evidently, since £ S?, Lemma 6.1 follows from Lemma 6.2.

d+1

In order to prove the estimate in Lemma 6.2, we break [0, 1]°"" into the union of

the sets
Em :(1 — &nl, 1] X e X (1 — &nmy 1] X [07 1 - 8n,m+l]
X oo X [0, 1 — gg.q41]-

and the permutations of E,, just as in the proof of Lemma 5.4, where ¢, ; is chosen as
in (5.15) with € and { in place of X and ¥, respectively. Consequently, we can write,

QinlthéC p]ZQOm+Z ZGQOmv

a m=

d+1 [dﬂ

where, the notation is self-evident when comparing with (5.10),

d s, d d+1 ;
B (1A +0+5. 121, +0+5) Vi 21
QOJ’H - /E P2n+\17\1 (Z) Hl W (1 — Zj )K/ dt
m = ]

and g0y, denotes the term with integral over ¢E,,. Again, since the stated estimate

in Lemma 6.2 is independent of the choice of the order of x;, we only need to deal

with Qg ,,. Using (5.8) and integrating Qo,, by parts once for each ¢, j=m+
.,d + 1, we conclude that

d+1
Qom =0"") T[ (&)™
J=m+1
d+1
. /@%@zw%
1—&,1 1—&um —m o j=m+l

Ki—1
XH@[‘DI I*t) dt dma

where the meaning of 4, ; is as before and 4,, ; are given by

) l=&nmi1 I—ép, j
iy / /
0 0
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O R TS DO KA B SRR
ot py2m d+1 aZ_p,A j+1
d+] j+1
1—¢,
P(V.\I+57%71+m,|/1\]+6—%71+m 1o !
x 2n-+|p|,+d+1-m ( (f ( )) ts1=0
tq41=0

J gpitl

x (1 — ) dtyyy, ...d1;.
i=m+1 athrl

Note that unlike the proof of Lemma 5.4, the lower limit ¢; = 0 plays a more serious
role here. Indeed, substituting the lower limit #; = 0 and upper limit ¢; = 1 — g, ;, it
follows from (5.3) and (5.13) that

d+1 d+1
|Am/‘<cn 2 H an E Um/1+ § g O'Um/z s
p=j+l1 o i=j+1

where the meaning of aU,, ;; is as before and U, ;; are given by

1 =&y mi1 1—&,, ; 1, d+1
0 0 ’
/ A=2
X H (1 — )" P dtyys ... dt;
i=m+1
and z;; = &G0+ - + GGG+ GG (1 — e 1) + - + GG — eny).

From our assumption that ¢ + ||, > (d + )/2 it follows that |A|, +0 +m — (d +
1)/2>0 for all m>0. Hence the power of 1 — z . +n~? is negative and we can use the
inequality

d+1 L
L=z 4n 22—z +n 721 = &l +n 2= +n7") (6.2)
i1
to enlarge the term under the integral signs (comparing with (5.16)). Using (5.17) for
0</<1 and te[—l 1], this gives

1

i -1
m }1\ 1_[+1 |€ — é7| N n—l)‘)*ll+5+’71_(d+])/2.
p=m

The right-hand side is the same estimate in (5.18); hence, we can follow the proof of
Case 1 in Lemma 5.4 to finish the proof of Lemma 6.2.

This way, we have proved Lemma 6.1. The estimate of Q, term can be carried out
in exactly the same way as in the proof of Theorem 3.1 so is the rest of the proof of
the theorem, which gives the proof of Theorem 3.3. [

Note that the restriction |4|; + 0= (d + 1)/2 is used to justify the use of (6.2) in the
estimate of U, ;;, which allows us to work with |& — {| and not to deal with z;;. The
case |A|; + d<(d + 1)/2 poses new difficulties since we need to work with various
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cases in z;;, and the induction argument showing J; < ¢Jy in the Case 2 of the proof of
Lemma 5.4 no longer seems to work.

Proof of Theorem 3.4. The proof follows essentially from the proof in parts (i) and
(ii) of Theorem 3.2, since it comes down to the proof of (i) and (ii) in the proof of
Theorem 2.11. We choose to give a brief independent proof below.

Notice that the condition |1, = Zﬁll (ki — [ki])=1 implies (d—1)/2=(d +
1)/2—|4];, so that 6>(d —1)/2 implies that o+ ||, =(d + 1)/2; that is, the
assumption of Theorem 3.3 holds. If y;<x;/2 for some j, then

= 215 - Vi1l = e

Hence, it follows that fori=1,2,...,d + 1

VEmi Y E = e X T X2,
Using this inequality in the estimate of Theorem 3.3 and the fact that 0<6 — (d —
1)/2<1, (i) is proved. If for all j = 1,2, ....d, y;>x;/2, then \/X5; +n~'[¢ — (| +

n-? =x;/ V2 4+ n~2. Using this inequality in the estimate in Theorem 3.3 gives the case
@. O

Note that the proof of Theorem 3.4 follows from the statement of Theorem 3.3; so
restriction (2.7) can be removed if the condition ||, + 0> (d + 1)/2 in Theorem 3.3
can be removed.
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